级联向量值衰落信道的渐近特征值分布

R. Muller
{"title":"级联向量值衰落信道的渐近特征值分布","authors":"R. Muller","doi":"10.1109/ISIT.2001.936149","DOIUrl":null,"url":null,"abstract":"The linear vector-valued channel x/spl rarr/ /spl Phi//sub i/M/sub i/x+z is analyzed in the asymptotic regime as the dimensions of the matrices and vectors involved become large. The eigenvalue distribution of the channel's covariance matrix is given in terms of its Stieltjes transform. The channel gets more and more ill-conditioned the more factors appear in the product. The study is of interest for cellular radio channels with receiving/transmitting antenna arrays.","PeriodicalId":433761,"journal":{"name":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels\",\"authors\":\"R. Muller\",\"doi\":\"10.1109/ISIT.2001.936149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear vector-valued channel x/spl rarr/ /spl Phi//sub i/M/sub i/x+z is analyzed in the asymptotic regime as the dimensions of the matrices and vectors involved become large. The eigenvalue distribution of the channel's covariance matrix is given in terms of its Stieltjes transform. The channel gets more and more ill-conditioned the more factors appear in the product. The study is of interest for cellular radio channels with receiving/transmitting antenna arrays.\",\"PeriodicalId\":433761,\"journal\":{\"name\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2001.936149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2001.936149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

对线性向量值通道x/spl rrr // spl Phi//下标i/M/下标i/x+z在矩阵和向量的维数变大时的渐近域进行了分析。用信道的Stieltjes变换给出了信道协方差矩阵的特征值分布。随着产品中出现的因素越来越多,渠道变得越来越病态。本研究对具有接收/发射天线阵列的蜂窝无线电信道具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels
The linear vector-valued channel x/spl rarr/ /spl Phi//sub i/M/sub i/x+z is analyzed in the asymptotic regime as the dimensions of the matrices and vectors involved become large. The eigenvalue distribution of the channel's covariance matrix is given in terms of its Stieltjes transform. The channel gets more and more ill-conditioned the more factors appear in the product. The study is of interest for cellular radio channels with receiving/transmitting antenna arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信