{"title":"MelGlow:基于位置变量卷积的高效波形生成网络","authors":"Zhen Zeng, Jianzong Wang, Ning Cheng, Jing Xiao","doi":"10.1109/SLT48900.2021.9383603","DOIUrl":null,"url":null,"abstract":"Recent neural vocoders usually use a WaveNet-like network to capture the long-term dependencies of the waveform, but a large number of parameters are required to obtain good modeling capabilities. In this paper, an efficient network, named location-variable convolution, is proposed to model the dependencies of waveforms. Different from the use of unified convolution kernels in WaveNet to capture the dependencies of arbitrary waveforms, location-variable convolutions utilizes a kernel predictor to generate multiple sets of convolution kernels based on the melspectrum, where each set of convolution kernels is used to perform convolution operations on the associated waveform intervals. Combining WaveGlow and location-variable convolutions, an efficient vocoder, named MelGlow, is designed. Experiments on the LJSpeech dataset show that MelGlow achieves better performance than WaveGlow at small model sizes, which verifies the effectiveness and potential optimization space of location-variable convolutions.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"MelGlow: Efficient Waveform Generative Network Based On Location-Variable Convolution\",\"authors\":\"Zhen Zeng, Jianzong Wang, Ning Cheng, Jing Xiao\",\"doi\":\"10.1109/SLT48900.2021.9383603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent neural vocoders usually use a WaveNet-like network to capture the long-term dependencies of the waveform, but a large number of parameters are required to obtain good modeling capabilities. In this paper, an efficient network, named location-variable convolution, is proposed to model the dependencies of waveforms. Different from the use of unified convolution kernels in WaveNet to capture the dependencies of arbitrary waveforms, location-variable convolutions utilizes a kernel predictor to generate multiple sets of convolution kernels based on the melspectrum, where each set of convolution kernels is used to perform convolution operations on the associated waveform intervals. Combining WaveGlow and location-variable convolutions, an efficient vocoder, named MelGlow, is designed. Experiments on the LJSpeech dataset show that MelGlow achieves better performance than WaveGlow at small model sizes, which verifies the effectiveness and potential optimization space of location-variable convolutions.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MelGlow: Efficient Waveform Generative Network Based On Location-Variable Convolution
Recent neural vocoders usually use a WaveNet-like network to capture the long-term dependencies of the waveform, but a large number of parameters are required to obtain good modeling capabilities. In this paper, an efficient network, named location-variable convolution, is proposed to model the dependencies of waveforms. Different from the use of unified convolution kernels in WaveNet to capture the dependencies of arbitrary waveforms, location-variable convolutions utilizes a kernel predictor to generate multiple sets of convolution kernels based on the melspectrum, where each set of convolution kernels is used to perform convolution operations on the associated waveform intervals. Combining WaveGlow and location-variable convolutions, an efficient vocoder, named MelGlow, is designed. Experiments on the LJSpeech dataset show that MelGlow achieves better performance than WaveGlow at small model sizes, which verifies the effectiveness and potential optimization space of location-variable convolutions.