使用NoSQL数据存储分析工业物联网数据

Khalid Mahmood, T. Risch, Kjell Orsborn
{"title":"使用NoSQL数据存储分析工业物联网数据","authors":"Khalid Mahmood, T. Risch, Kjell Orsborn","doi":"10.1109/SMARTCOMP52413.2021.00034","DOIUrl":null,"url":null,"abstract":"Many business and mission-critical decisions of the Industrial Internet of Things (IIoT) depend on efficient data management of sensor streams. Contemporary distributed IIoT applications consist of large numbers of sensors, producing massive volumes of heterogeneous sensor streams at high rates. The combination of these features of IIoT applications pose substantial challenges for existing Database Management Systems (DBMSs) in providing scalable data analytics. For example, Relational-DBMSs (RDBMSs) exhibit scalability issues, single point of failure, and difficulty in managing heterogeneity due to it’s rigid schemas. In contrast to RDBMSs, distributed NoSQL datastores could provide scalability of heterogeneous data. However, the simple query processing capabilities of NoSQL datastores limit advanced analytics. In this paper, we first compare both approaches, having an RDBMS and NoSQL backend for providing data-management solutions for distributed IIoT applications. Then, we utilize query processing in an in-memory database to integrate edge computing with the NoSQL datastore. By utilizing high-volume streams from a real-world IIoT application of Bosch Rexroth - Hägglund, we show that the proposed approach can potentially overcome the limitations of both RDBMS and NoSQL databases for performing advanced analytics.","PeriodicalId":330785,"journal":{"name":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytics of IIoT Data Using a NoSQL Datastore\",\"authors\":\"Khalid Mahmood, T. Risch, Kjell Orsborn\",\"doi\":\"10.1109/SMARTCOMP52413.2021.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many business and mission-critical decisions of the Industrial Internet of Things (IIoT) depend on efficient data management of sensor streams. Contemporary distributed IIoT applications consist of large numbers of sensors, producing massive volumes of heterogeneous sensor streams at high rates. The combination of these features of IIoT applications pose substantial challenges for existing Database Management Systems (DBMSs) in providing scalable data analytics. For example, Relational-DBMSs (RDBMSs) exhibit scalability issues, single point of failure, and difficulty in managing heterogeneity due to it’s rigid schemas. In contrast to RDBMSs, distributed NoSQL datastores could provide scalability of heterogeneous data. However, the simple query processing capabilities of NoSQL datastores limit advanced analytics. In this paper, we first compare both approaches, having an RDBMS and NoSQL backend for providing data-management solutions for distributed IIoT applications. Then, we utilize query processing in an in-memory database to integrate edge computing with the NoSQL datastore. By utilizing high-volume streams from a real-world IIoT application of Bosch Rexroth - Hägglund, we show that the proposed approach can potentially overcome the limitations of both RDBMS and NoSQL databases for performing advanced analytics.\",\"PeriodicalId\":330785,\"journal\":{\"name\":\"2021 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP52413.2021.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP52413.2021.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

工业物联网(IIoT)的许多业务和关键任务决策依赖于传感器流的有效数据管理。当代分布式工业物联网应用由大量传感器组成,以高速率产生大量异构传感器流。工业物联网应用程序的这些特性的组合对现有的数据库管理系统(dbms)在提供可扩展的数据分析方面提出了重大挑战。例如,关系dbms (rdbms)表现出可伸缩性问题、单点故障以及由于其严格的模式而难以管理异构性。与rdbms相比,分布式NoSQL数据存储可以提供异构数据的可伸缩性。然而,NoSQL数据存储的简单查询处理能力限制了高级分析。在本文中,我们首先比较了两种方法,使用RDBMS和NoSQL后端为分布式工业物联网应用提供数据管理解决方案。然后,我们利用内存数据库中的查询处理将边缘计算与NoSQL数据存储集成在一起。通过利用博世力士乐(Hägglund)的实际工业物联网应用中的大量数据流,我们表明,所提出的方法可以潜在地克服RDBMS和NoSQL数据库的局限性,用于执行高级分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytics of IIoT Data Using a NoSQL Datastore
Many business and mission-critical decisions of the Industrial Internet of Things (IIoT) depend on efficient data management of sensor streams. Contemporary distributed IIoT applications consist of large numbers of sensors, producing massive volumes of heterogeneous sensor streams at high rates. The combination of these features of IIoT applications pose substantial challenges for existing Database Management Systems (DBMSs) in providing scalable data analytics. For example, Relational-DBMSs (RDBMSs) exhibit scalability issues, single point of failure, and difficulty in managing heterogeneity due to it’s rigid schemas. In contrast to RDBMSs, distributed NoSQL datastores could provide scalability of heterogeneous data. However, the simple query processing capabilities of NoSQL datastores limit advanced analytics. In this paper, we first compare both approaches, having an RDBMS and NoSQL backend for providing data-management solutions for distributed IIoT applications. Then, we utilize query processing in an in-memory database to integrate edge computing with the NoSQL datastore. By utilizing high-volume streams from a real-world IIoT application of Bosch Rexroth - Hägglund, we show that the proposed approach can potentially overcome the limitations of both RDBMS and NoSQL databases for performing advanced analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信