E. Bestelink, Jean-Charles Fustec, O. Sagazan, Hao-Jing Teng, R. Sporea
{"title":"柔性微晶硅源门控晶体管在2.5 mm弯曲半径下具有可忽略的直流性能退化","authors":"E. Bestelink, Jean-Charles Fustec, O. Sagazan, Hao-Jing Teng, R. Sporea","doi":"10.1109/fleps53764.2022.9781587","DOIUrl":null,"url":null,"abstract":"The first flexible source-gated transistors (SGTs) in microcrystalline silicon have been fabricated and characterized under bending stress. As SGTs are contact controlled devices, the channel does not modulate drain current, however its geometry has implications for operation. We show how reduced channel length in SGTs helps promote negligible threshold voltage shifts when strain is introduced with a radius of r = 2.5 mm.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flexible Microcrystalline Silicon Source-Gated Transistors with Negliglible DC Performace Degradation at 2.5 mm Bending Radius\",\"authors\":\"E. Bestelink, Jean-Charles Fustec, O. Sagazan, Hao-Jing Teng, R. Sporea\",\"doi\":\"10.1109/fleps53764.2022.9781587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first flexible source-gated transistors (SGTs) in microcrystalline silicon have been fabricated and characterized under bending stress. As SGTs are contact controlled devices, the channel does not modulate drain current, however its geometry has implications for operation. We show how reduced channel length in SGTs helps promote negligible threshold voltage shifts when strain is introduced with a radius of r = 2.5 mm.\",\"PeriodicalId\":221424,\"journal\":{\"name\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fleps53764.2022.9781587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible Microcrystalline Silicon Source-Gated Transistors with Negliglible DC Performace Degradation at 2.5 mm Bending Radius
The first flexible source-gated transistors (SGTs) in microcrystalline silicon have been fabricated and characterized under bending stress. As SGTs are contact controlled devices, the channel does not modulate drain current, however its geometry has implications for operation. We show how reduced channel length in SGTs helps promote negligible threshold voltage shifts when strain is introduced with a radius of r = 2.5 mm.