压缩非负稀疏编码

Fei Wang, Ping Li
{"title":"压缩非负稀疏编码","authors":"Fei Wang, Ping Li","doi":"10.1109/ICDM.2010.162","DOIUrl":null,"url":null,"abstract":"Sparse Coding (SC), which models the data vectors as sparse linear combinations over basis vectors, has been widely applied in machine learning, signal processing and neuroscience. In this paper, we propose a dual random projection method to provide an efficient solution to Nonnegative Sparse Coding (NSC) using small memory. Experiments on real world data demonstrate the effectiveness of the proposed method.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Compressed Nonnegative Sparse Coding\",\"authors\":\"Fei Wang, Ping Li\",\"doi\":\"10.1109/ICDM.2010.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse Coding (SC), which models the data vectors as sparse linear combinations over basis vectors, has been widely applied in machine learning, signal processing and neuroscience. In this paper, we propose a dual random projection method to provide an efficient solution to Nonnegative Sparse Coding (NSC) using small memory. Experiments on real world data demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

稀疏编码(SC)将数据向量建模为基向量上的稀疏线性组合,已广泛应用于机器学习、信号处理和神经科学等领域。针对非负稀疏编码(non - negative Sparse Coding, NSC)的小内存问题,提出了一种双随机投影方法。实际数据实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed Nonnegative Sparse Coding
Sparse Coding (SC), which models the data vectors as sparse linear combinations over basis vectors, has been widely applied in machine learning, signal processing and neuroscience. In this paper, we propose a dual random projection method to provide an efficient solution to Nonnegative Sparse Coding (NSC) using small memory. Experiments on real world data demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信