基于迭代子空间跟踪算法的数字调制信号盲信噪比估计

Dan Sui, L. Ge, Qing Wang, Hui Zhang
{"title":"基于迭代子空间跟踪算法的数字调制信号盲信噪比估计","authors":"Dan Sui, L. Ge, Qing Wang, Hui Zhang","doi":"10.1109/ITW2.2006.323708","DOIUrl":null,"url":null,"abstract":"Signal-to-noise ratio (SNR) is an important parameter in turbo soft decoding. In this paper a blind SNR estimator for digital modulated signals in the complex additive white Gaussian noise (AWGN) channel is proposed. The algorithm uses the eigenvalues of the covariance of the received signal. And the eigenvalues are estimated via an iterative subspace tracking algorithm, known as the projection approximation subspace tracking (PASTd) algorithm. The orthonormality of the estimated eigenvectors is guaranteed by the use of the Gram-Schmidt method. Computer simulations are performed for 2/4/8 PSK signals when the true SNR is in the range from 3 dB to 25 dB. Compared with the eigenvalue decomposition (ED)-based method, the proposed algorithm can achieve a comparable estimation but with a significantly reduced computational complexity","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Blind SNR Estimator Based on Iterative Subspace Tracking Algorithm for Digital Modulated Signals\",\"authors\":\"Dan Sui, L. Ge, Qing Wang, Hui Zhang\",\"doi\":\"10.1109/ITW2.2006.323708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signal-to-noise ratio (SNR) is an important parameter in turbo soft decoding. In this paper a blind SNR estimator for digital modulated signals in the complex additive white Gaussian noise (AWGN) channel is proposed. The algorithm uses the eigenvalues of the covariance of the received signal. And the eigenvalues are estimated via an iterative subspace tracking algorithm, known as the projection approximation subspace tracking (PASTd) algorithm. The orthonormality of the estimated eigenvectors is guaranteed by the use of the Gram-Schmidt method. Computer simulations are performed for 2/4/8 PSK signals when the true SNR is in the range from 3 dB to 25 dB. Compared with the eigenvalue decomposition (ED)-based method, the proposed algorithm can achieve a comparable estimation but with a significantly reduced computational complexity\",\"PeriodicalId\":299513,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Chengdu\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Chengdu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW2.2006.323708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

信噪比是turbo软译码中的一个重要参数。针对复杂加性高斯白噪声信道中的数字调制信号,提出了一种盲信噪比估计方法。该算法利用接收信号的协方差特征值。通过迭代子空间跟踪算法估计特征值,即投影逼近子空间跟踪(PASTd)算法。利用Gram-Schmidt方法保证了估计的特征向量的正交性。在真实信噪比为3db ~ 25db的情况下,对2/4/8 PSK信号进行了计算机仿真。与基于特征值分解(ED)的方法相比,该算法可以实现可比性估计,但显著降低了计算复杂度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Blind SNR Estimator Based on Iterative Subspace Tracking Algorithm for Digital Modulated Signals
Signal-to-noise ratio (SNR) is an important parameter in turbo soft decoding. In this paper a blind SNR estimator for digital modulated signals in the complex additive white Gaussian noise (AWGN) channel is proposed. The algorithm uses the eigenvalues of the covariance of the received signal. And the eigenvalues are estimated via an iterative subspace tracking algorithm, known as the projection approximation subspace tracking (PASTd) algorithm. The orthonormality of the estimated eigenvectors is guaranteed by the use of the Gram-Schmidt method. Computer simulations are performed for 2/4/8 PSK signals when the true SNR is in the range from 3 dB to 25 dB. Compared with the eigenvalue decomposition (ED)-based method, the proposed algorithm can achieve a comparable estimation but with a significantly reduced computational complexity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信