具有可调输出单元的亚微米模拟神经网络

A.H. Abutalebi, S. M. Fakhraie
{"title":"具有可调输出单元的亚微米模拟神经网络","authors":"A.H. Abutalebi, S. M. Fakhraie","doi":"10.1109/ICM.1998.825622","DOIUrl":null,"url":null,"abstract":"A submicron feedforward analog neural network is described. This network uses submicron Gilbert multipliers for its synapses and a novel circuit based on the current-comparator circuit for its neuron. The XOR problem is solved by this network to demonstrate the capability of implementing multi-layer networks. The network is designed in a 0.5 /spl mu/m technology. HSPICE simulation shows the validity of the operation of the network.","PeriodicalId":156747,"journal":{"name":"Proceedings of the Tenth International Conference on Microelectronics (Cat. No.98EX186)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A submicron analog neural network with an adjustable-level output unit\",\"authors\":\"A.H. Abutalebi, S. M. Fakhraie\",\"doi\":\"10.1109/ICM.1998.825622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A submicron feedforward analog neural network is described. This network uses submicron Gilbert multipliers for its synapses and a novel circuit based on the current-comparator circuit for its neuron. The XOR problem is solved by this network to demonstrate the capability of implementing multi-layer networks. The network is designed in a 0.5 /spl mu/m technology. HSPICE simulation shows the validity of the operation of the network.\",\"PeriodicalId\":156747,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Microelectronics (Cat. No.98EX186)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Microelectronics (Cat. No.98EX186)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.1998.825622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Microelectronics (Cat. No.98EX186)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.1998.825622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

描述了一种亚微米前馈模拟神经网络。该网络的突触使用亚微米吉尔伯特乘法器,神经元使用基于电流比较器电路的新型电路。该网络解决了异或问题,证明了实现多层网络的能力。该网络采用0.5 /spl mu/m的技术设计。HSPICE仿真验证了该网络运行的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A submicron analog neural network with an adjustable-level output unit
A submicron feedforward analog neural network is described. This network uses submicron Gilbert multipliers for its synapses and a novel circuit based on the current-comparator circuit for its neuron. The XOR problem is solved by this network to demonstrate the capability of implementing multi-layer networks. The network is designed in a 0.5 /spl mu/m technology. HSPICE simulation shows the validity of the operation of the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信