锂离子电池反激变换器中MHz开关操作及其并行化研究

Kentaro Nakayama, N. Satoh
{"title":"锂离子电池反激变换器中MHz开关操作及其并行化研究","authors":"Kentaro Nakayama, N. Satoh","doi":"10.1109/WiPDAAsia49671.2020.9360294","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries (LiBs) have been widely used as consumer rechargeable batteries. We use the flyback topology, which is a type of isolated DC/DC converter, as the boosting circuit for an LiB. In this study, the flyback converter is operated with a single LiB in both the main and gate drive circuits. The switching frequency of conventional flyback converters is in the range of several hundred kHz. However, we aim to drive the flyback converter at 2.1MHz. Accordingly, Si and GaN devices are compared, and Liqualloy magnetic materials are investigated. Then, the components suitable for our field of use are reexamined. Additionally, our approach for the parallelization of the circuit to compensate for the drop in the output voltage of the LiB is described.","PeriodicalId":432666,"journal":{"name":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study on MHz Switching Operation in Flyback Converter for Lithium Ion Battery and its Parallelization\",\"authors\":\"Kentaro Nakayama, N. Satoh\",\"doi\":\"10.1109/WiPDAAsia49671.2020.9360294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries (LiBs) have been widely used as consumer rechargeable batteries. We use the flyback topology, which is a type of isolated DC/DC converter, as the boosting circuit for an LiB. In this study, the flyback converter is operated with a single LiB in both the main and gate drive circuits. The switching frequency of conventional flyback converters is in the range of several hundred kHz. However, we aim to drive the flyback converter at 2.1MHz. Accordingly, Si and GaN devices are compared, and Liqualloy magnetic materials are investigated. Then, the components suitable for our field of use are reexamined. Additionally, our approach for the parallelization of the circuit to compensate for the drop in the output voltage of the LiB is described.\",\"PeriodicalId\":432666,\"journal\":{\"name\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiPDAAsia49671.2020.9360294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiPDAAsia49671.2020.9360294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

锂离子电池(LiBs)作为可充电电池已得到广泛应用。我们使用反激拓扑,这是一种隔离的DC/DC转换器,作为LiB的升压电路。在本研究中,反激变换器在主电路和栅极驱动电路中都使用单个LiB进行操作。传统反激变换器的开关频率在几百千赫范围内。然而,我们的目标是驱动2.1MHz的反激变换器。因此,比较了硅和氮化镓器件,并对液态合金磁性材料进行了研究。然后,重新检查适合我们使用领域的组件。此外,我们对电路的并行化方法进行了描述,以补偿LiB输出电压的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on MHz Switching Operation in Flyback Converter for Lithium Ion Battery and its Parallelization
Lithium-ion batteries (LiBs) have been widely used as consumer rechargeable batteries. We use the flyback topology, which is a type of isolated DC/DC converter, as the boosting circuit for an LiB. In this study, the flyback converter is operated with a single LiB in both the main and gate drive circuits. The switching frequency of conventional flyback converters is in the range of several hundred kHz. However, we aim to drive the flyback converter at 2.1MHz. Accordingly, Si and GaN devices are compared, and Liqualloy magnetic materials are investigated. Then, the components suitable for our field of use are reexamined. Additionally, our approach for the parallelization of the circuit to compensate for the drop in the output voltage of the LiB is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信