最小化分子势能函数使用遗传Nelder-Mead算法

A. Ali, A. Hassanien
{"title":"最小化分子势能函数使用遗传Nelder-Mead算法","authors":"A. Ali, A. Hassanien","doi":"10.1109/ICCES.2013.6707197","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for minimizing the molecular potential energy function. The new algorithm combines a global search genetic algorithm with a local search Nelder-Mead algorithm in order to search for the global minimum of molecular potential energy function. The minimization of molecular potential energy function problem is very challenging, since the number of local minima grows exponentially with the molecular size. The new algorithm is called GNMA (Genetic Nelder-Mead Algorithm). Such hybridization enhances the power of the search technique by combining the wide exploration capabilities of Genetic Algorithm (GA) and the deep exploitation capabilities of Nelder-Mead algorithm. The proposed algorithm can reach the global or near-global optimum for the molecular potential energy function with up to 200 degrees of freedom. The performance of the proposed algorithm has been compared with other 9 existing methods from the literature. The numerical results show that the proposed algorithm is promising and produce high quality solutions with low computational costs.","PeriodicalId":277807,"journal":{"name":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minimizing molecular potential energy function using genetic Nelder-Mead algorithm\",\"authors\":\"A. Ali, A. Hassanien\",\"doi\":\"10.1109/ICCES.2013.6707197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm for minimizing the molecular potential energy function. The new algorithm combines a global search genetic algorithm with a local search Nelder-Mead algorithm in order to search for the global minimum of molecular potential energy function. The minimization of molecular potential energy function problem is very challenging, since the number of local minima grows exponentially with the molecular size. The new algorithm is called GNMA (Genetic Nelder-Mead Algorithm). Such hybridization enhances the power of the search technique by combining the wide exploration capabilities of Genetic Algorithm (GA) and the deep exploitation capabilities of Nelder-Mead algorithm. The proposed algorithm can reach the global or near-global optimum for the molecular potential energy function with up to 200 degrees of freedom. The performance of the proposed algorithm has been compared with other 9 existing methods from the literature. The numerical results show that the proposed algorithm is promising and produce high quality solutions with low computational costs.\",\"PeriodicalId\":277807,\"journal\":{\"name\":\"2013 8th International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2013.6707197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2013.6707197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种新的最小化分子势能函数的算法。该算法将全局搜索遗传算法与局部搜索Nelder-Mead算法相结合,以搜索分子势能函数的全局最小值。分子势能函数的最小化问题是一个非常具有挑战性的问题,因为局部极小值的数目随着分子的大小呈指数增长。这种新算法被称为GNMA (Genetic Nelder-Mead algorithm)。这种杂交结合了遗传算法(GA)的广泛搜索能力和Nelder-Mead算法的深度挖掘能力,增强了搜索技术的能力。该算法可以在200个自由度的范围内达到分子势能函数的全局或近全局最优。将该算法的性能与文献中其他9种方法进行了比较。数值结果表明,该算法具有较好的应用前景,能够以较低的计算成本得到高质量的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizing molecular potential energy function using genetic Nelder-Mead algorithm
This paper presents a new algorithm for minimizing the molecular potential energy function. The new algorithm combines a global search genetic algorithm with a local search Nelder-Mead algorithm in order to search for the global minimum of molecular potential energy function. The minimization of molecular potential energy function problem is very challenging, since the number of local minima grows exponentially with the molecular size. The new algorithm is called GNMA (Genetic Nelder-Mead Algorithm). Such hybridization enhances the power of the search technique by combining the wide exploration capabilities of Genetic Algorithm (GA) and the deep exploitation capabilities of Nelder-Mead algorithm. The proposed algorithm can reach the global or near-global optimum for the molecular potential energy function with up to 200 degrees of freedom. The performance of the proposed algorithm has been compared with other 9 existing methods from the literature. The numerical results show that the proposed algorithm is promising and produce high quality solutions with low computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信