基于双向GRU网络的多普勒雷达精确心跳检测

Hui Lu, Markus Heyder, Marvin Wenzel, Nils C. Albrecht, Dominik Langer, Alexander Koelpin
{"title":"基于双向GRU网络的多普勒雷达精确心跳检测","authors":"Hui Lu, Markus Heyder, Marvin Wenzel, Nils C. Albrecht, Dominik Langer, Alexander Koelpin","doi":"10.1109/RWS55624.2023.10046202","DOIUrl":null,"url":null,"abstract":"Heart rate is one of the most critical and important vital signs in healthcare. While electrocardiography (ECG) is gold-standard procedure for heart rate monitoring, contactless monitoring is preferred in many applications like long-term monitoring. Radar systems enable contactless sensing by measuring small movements on the chest induced by the heart beat. In this paper, we present a machine learning-based method using a bidirectional gated recurrent unit (bi-GRU) network for accurate heartbeat detection. Band-pass filtered in-phase (I) and quadrature (Q) signals in heart sound and pulse wave frequency ranges were fused. The proposed method achieves a high F1 score of 98.06% for heart beat detection, thus outperforming the state-of-the-art method with an F1 score of 95.62% in the resting scenario. In the tilt-up scenario with the tilt table, F1 score is significantly improved by 10%. Besides, a median inter-beat intervals (IBIs) RMSE of only 22.07 ms in the resting scenario is realized.","PeriodicalId":110742,"journal":{"name":"2023 IEEE Radio and Wireless Symposium (RWS)","volume":"2197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Heart Beat Detection with Doppler Radar using Bidirectional GRU Network\",\"authors\":\"Hui Lu, Markus Heyder, Marvin Wenzel, Nils C. Albrecht, Dominik Langer, Alexander Koelpin\",\"doi\":\"10.1109/RWS55624.2023.10046202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart rate is one of the most critical and important vital signs in healthcare. While electrocardiography (ECG) is gold-standard procedure for heart rate monitoring, contactless monitoring is preferred in many applications like long-term monitoring. Radar systems enable contactless sensing by measuring small movements on the chest induced by the heart beat. In this paper, we present a machine learning-based method using a bidirectional gated recurrent unit (bi-GRU) network for accurate heartbeat detection. Band-pass filtered in-phase (I) and quadrature (Q) signals in heart sound and pulse wave frequency ranges were fused. The proposed method achieves a high F1 score of 98.06% for heart beat detection, thus outperforming the state-of-the-art method with an F1 score of 95.62% in the resting scenario. In the tilt-up scenario with the tilt table, F1 score is significantly improved by 10%. Besides, a median inter-beat intervals (IBIs) RMSE of only 22.07 ms in the resting scenario is realized.\",\"PeriodicalId\":110742,\"journal\":{\"name\":\"2023 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"2197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS55624.2023.10046202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS55624.2023.10046202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心率是医疗保健中最关键、最重要的生命体征之一。虽然心电图(ECG)是心率监测的金标准程序,但在许多应用中,如长期监测,非接触式监测是首选。雷达系统通过测量由心跳引起的胸部微小运动来实现非接触式传感。在本文中,我们提出了一种基于机器学习的方法,使用双向门控循环单元(bi-GRU)网络进行准确的心跳检测。在心音和脉搏波频率范围内进行带通滤波的同相(I)和正交(Q)信号融合。本文方法的心跳检测F1得分高达98.06%,优于当前静息场景下F1得分95.62%的方法。在使用倾斜表的倾斜场景中,F1得分显著提高了10%。此外,在静息情况下,中位心跳间隔(IBIs) RMSE仅为22.07 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Heart Beat Detection with Doppler Radar using Bidirectional GRU Network
Heart rate is one of the most critical and important vital signs in healthcare. While electrocardiography (ECG) is gold-standard procedure for heart rate monitoring, contactless monitoring is preferred in many applications like long-term monitoring. Radar systems enable contactless sensing by measuring small movements on the chest induced by the heart beat. In this paper, we present a machine learning-based method using a bidirectional gated recurrent unit (bi-GRU) network for accurate heartbeat detection. Band-pass filtered in-phase (I) and quadrature (Q) signals in heart sound and pulse wave frequency ranges were fused. The proposed method achieves a high F1 score of 98.06% for heart beat detection, thus outperforming the state-of-the-art method with an F1 score of 95.62% in the resting scenario. In the tilt-up scenario with the tilt table, F1 score is significantly improved by 10%. Besides, a median inter-beat intervals (IBIs) RMSE of only 22.07 ms in the resting scenario is realized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信