加性非高斯噪声数字幅相调制信号的自适应分类

I. Podkurkov, A. Nadeev
{"title":"加性非高斯噪声数字幅相调制信号的自适应分类","authors":"I. Podkurkov, A. Nadeev","doi":"10.1109/sinkhroinfo.2017.7997549","DOIUrl":null,"url":null,"abstract":"In this paper we analyze adaptive classification algorithm for digital amplitude-phase modulated signals in flat fading channel with non-Gaussian additive noise, representing possible interference in the channel besides thermal receiver noise. We represent additive noise via normal mixture model, which is able to model various interference scenarios by choosing specific mixture parameters. The adaptive classification algorithm based on application of recursive form of Expectation-Maximization (EM) algorithm for noise parameters estimation is proposed. It allows easy maximum-likelihood classification of the signal of interest using posterior probabilities computed in EM framework. This adaptive approach allows receiver classification algorithm to adapt to time-varying interference scenarios, since recursive form of EM algorithm updates mixture parameters estimates with every new sample obtained. In this paper we analyze the performance of our adaptive classification algorithm for a specific interference scenario expressed with particular interference mixture parameters. We compare its performance to classic optimal maximum-likelihood classification for Gaussian additive noise scenario, and also to algorithm with perfect knowledge of noise parameters.","PeriodicalId":372303,"journal":{"name":"2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive classification of digital amplitude-phase modulated signals with additive non-Gaussian noise\",\"authors\":\"I. Podkurkov, A. Nadeev\",\"doi\":\"10.1109/sinkhroinfo.2017.7997549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze adaptive classification algorithm for digital amplitude-phase modulated signals in flat fading channel with non-Gaussian additive noise, representing possible interference in the channel besides thermal receiver noise. We represent additive noise via normal mixture model, which is able to model various interference scenarios by choosing specific mixture parameters. The adaptive classification algorithm based on application of recursive form of Expectation-Maximization (EM) algorithm for noise parameters estimation is proposed. It allows easy maximum-likelihood classification of the signal of interest using posterior probabilities computed in EM framework. This adaptive approach allows receiver classification algorithm to adapt to time-varying interference scenarios, since recursive form of EM algorithm updates mixture parameters estimates with every new sample obtained. In this paper we analyze the performance of our adaptive classification algorithm for a specific interference scenario expressed with particular interference mixture parameters. We compare its performance to classic optimal maximum-likelihood classification for Gaussian additive noise scenario, and also to algorithm with perfect knowledge of noise parameters.\",\"PeriodicalId\":372303,\"journal\":{\"name\":\"2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sinkhroinfo.2017.7997549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sinkhroinfo.2017.7997549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文分析了具有非高斯加性噪声的平坦衰落信道中数字幅相调制信号的自适应分类算法,这些噪声代表了除热接收机噪声外信道中可能存在的干扰。我们通过正常混合模型来表示加性噪声,该模型可以通过选择特定的混合参数来模拟各种干扰情况。提出了一种应用递归期望最大化算法进行噪声参数估计的自适应分类算法。它允许使用EM框架中计算的后验概率对感兴趣的信号进行简单的最大似然分类。这种自适应方法允许接收机分类算法适应时变干扰情况,因为EM算法的递归形式会随着获得的每个新样本更新混合参数估计。在本文中,我们分析了自适应分类算法在用特定干扰混合参数表示的特定干扰场景下的性能。我们将其性能与经典的高斯加性噪声场景的最优最大似然分类进行了比较,并与具有完全噪声参数知识的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive classification of digital amplitude-phase modulated signals with additive non-Gaussian noise
In this paper we analyze adaptive classification algorithm for digital amplitude-phase modulated signals in flat fading channel with non-Gaussian additive noise, representing possible interference in the channel besides thermal receiver noise. We represent additive noise via normal mixture model, which is able to model various interference scenarios by choosing specific mixture parameters. The adaptive classification algorithm based on application of recursive form of Expectation-Maximization (EM) algorithm for noise parameters estimation is proposed. It allows easy maximum-likelihood classification of the signal of interest using posterior probabilities computed in EM framework. This adaptive approach allows receiver classification algorithm to adapt to time-varying interference scenarios, since recursive form of EM algorithm updates mixture parameters estimates with every new sample obtained. In this paper we analyze the performance of our adaptive classification algorithm for a specific interference scenario expressed with particular interference mixture parameters. We compare its performance to classic optimal maximum-likelihood classification for Gaussian additive noise scenario, and also to algorithm with perfect knowledge of noise parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信