V. Kober, S. Voronin, A. Makovetskii, Dmitrii Zhernov, A. Voronin
{"title":"卷积自编码器提取二维图像的局部特征","authors":"V. Kober, S. Voronin, A. Makovetskii, Dmitrii Zhernov, A. Voronin","doi":"10.1117/12.2677848","DOIUrl":null,"url":null,"abstract":"The important task of 2D image classification and segmentation is the extraction of the local geometrical features. The convolution neural network is the common approach last years in this field. Usually, the neighborhood of each pixel of the image is implemented to collect local geometrical information. The information for each pixel is stored in a matrix. Then, Convolutional Auto-Encoder (CAE) is utilized to extract the main geometrical features. In this paper, we propose a neural network based on CAE to solve the extraction of local geometrical features problem for noisy images. Computer simulation results are provided to illustrate the performance of the proposed method.","PeriodicalId":434863,"journal":{"name":"Optical Engineering + Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional auto-encoder to extract local features of 2D images\",\"authors\":\"V. Kober, S. Voronin, A. Makovetskii, Dmitrii Zhernov, A. Voronin\",\"doi\":\"10.1117/12.2677848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The important task of 2D image classification and segmentation is the extraction of the local geometrical features. The convolution neural network is the common approach last years in this field. Usually, the neighborhood of each pixel of the image is implemented to collect local geometrical information. The information for each pixel is stored in a matrix. Then, Convolutional Auto-Encoder (CAE) is utilized to extract the main geometrical features. In this paper, we propose a neural network based on CAE to solve the extraction of local geometrical features problem for noisy images. Computer simulation results are provided to illustrate the performance of the proposed method.\",\"PeriodicalId\":434863,\"journal\":{\"name\":\"Optical Engineering + Applications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Engineering + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2677848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional auto-encoder to extract local features of 2D images
The important task of 2D image classification and segmentation is the extraction of the local geometrical features. The convolution neural network is the common approach last years in this field. Usually, the neighborhood of each pixel of the image is implemented to collect local geometrical information. The information for each pixel is stored in a matrix. Then, Convolutional Auto-Encoder (CAE) is utilized to extract the main geometrical features. In this paper, we propose a neural network based on CAE to solve the extraction of local geometrical features problem for noisy images. Computer simulation results are provided to illustrate the performance of the proposed method.