卷积自编码器提取二维图像的局部特征

V. Kober, S. Voronin, A. Makovetskii, Dmitrii Zhernov, A. Voronin
{"title":"卷积自编码器提取二维图像的局部特征","authors":"V. Kober, S. Voronin, A. Makovetskii, Dmitrii Zhernov, A. Voronin","doi":"10.1117/12.2677848","DOIUrl":null,"url":null,"abstract":"The important task of 2D image classification and segmentation is the extraction of the local geometrical features. The convolution neural network is the common approach last years in this field. Usually, the neighborhood of each pixel of the image is implemented to collect local geometrical information. The information for each pixel is stored in a matrix. Then, Convolutional Auto-Encoder (CAE) is utilized to extract the main geometrical features. In this paper, we propose a neural network based on CAE to solve the extraction of local geometrical features problem for noisy images. Computer simulation results are provided to illustrate the performance of the proposed method.","PeriodicalId":434863,"journal":{"name":"Optical Engineering + Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional auto-encoder to extract local features of 2D images\",\"authors\":\"V. Kober, S. Voronin, A. Makovetskii, Dmitrii Zhernov, A. Voronin\",\"doi\":\"10.1117/12.2677848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The important task of 2D image classification and segmentation is the extraction of the local geometrical features. The convolution neural network is the common approach last years in this field. Usually, the neighborhood of each pixel of the image is implemented to collect local geometrical information. The information for each pixel is stored in a matrix. Then, Convolutional Auto-Encoder (CAE) is utilized to extract the main geometrical features. In this paper, we propose a neural network based on CAE to solve the extraction of local geometrical features problem for noisy images. Computer simulation results are provided to illustrate the performance of the proposed method.\",\"PeriodicalId\":434863,\"journal\":{\"name\":\"Optical Engineering + Applications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Engineering + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2677848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维图像分类与分割的重要任务是局部几何特征的提取。卷积神经网络是近年来该领域的常用方法。通常利用图像各像素的邻域来获取局部几何信息。每个像素的信息存储在一个矩阵中。然后,利用卷积自编码器(CAE)提取主要几何特征。本文提出了一种基于CAE的神经网络来解决噪声图像的局部几何特征提取问题。计算机仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional auto-encoder to extract local features of 2D images
The important task of 2D image classification and segmentation is the extraction of the local geometrical features. The convolution neural network is the common approach last years in this field. Usually, the neighborhood of each pixel of the image is implemented to collect local geometrical information. The information for each pixel is stored in a matrix. Then, Convolutional Auto-Encoder (CAE) is utilized to extract the main geometrical features. In this paper, we propose a neural network based on CAE to solve the extraction of local geometrical features problem for noisy images. Computer simulation results are provided to illustrate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信