RP的0 - 1定律

R. Impagliazzo, Philippe Moser
{"title":"RP的0 - 1定律","authors":"R. Impagliazzo, Philippe Moser","doi":"10.1109/CCC.2003.1214409","DOIUrl":null,"url":null,"abstract":"We show that if RP has p-measure nonzero then ZPP=EXP. As corollaries, we obtain a zero-one law for RP, and that both probabilistic classes ZPP and RP have the same p-measure. Finally we prove that if NP has p-measure nonzero then NP=AM.","PeriodicalId":286846,"journal":{"name":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A zero one law for RP\",\"authors\":\"R. Impagliazzo, Philippe Moser\",\"doi\":\"10.1109/CCC.2003.1214409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if RP has p-measure nonzero then ZPP=EXP. As corollaries, we obtain a zero-one law for RP, and that both probabilistic classes ZPP and RP have the same p-measure. Finally we prove that if NP has p-measure nonzero then NP=AM.\",\"PeriodicalId\":286846,\"journal\":{\"name\":\"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2003.1214409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2003.1214409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们证明了如果RP具有p测度非零,则ZPP=EXP。作为推论,我们得到了RP的一个0 - 1定律,并且两个概率类ZPP和RP具有相同的p测度。最后证明了如果NP具有p测度非零,则NP=AM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A zero one law for RP
We show that if RP has p-measure nonzero then ZPP=EXP. As corollaries, we obtain a zero-one law for RP, and that both probabilistic classes ZPP and RP have the same p-measure. Finally we prove that if NP has p-measure nonzero then NP=AM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信