{"title":"EUSO-SPB2荧光望远镜的机器学习技术","authors":"G. Filippatos, M. Zotov","doi":"10.22323/1.444.0234","DOIUrl":null,"url":null,"abstract":"The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) is the most advanced balloon mission undertaken by the JEM-EUSO collaboration. EUSO-SPB2 is built on the experience of previous stratosphere missions, EUSO-Balloon and EUSO-SPB, and of the Mini-EUSO space mission currently active onboard the International Space Station. EUSO- SPB2 is equipped with two instruments: a fluorescence telescope aimed at registering ultra-high energy cosmic rays (UHECRs) with an energy above 2 EeV and a Cherenkov telescope built to measure direct Cherenkov emission from cosmic rays with energies above 1 PeV. The EUSO-SPB2 mission will provide pioneering observations on the path towards a space-based multi-messenger observatory. As such, a special attention was paid to the development of triggers and other software aimed at comprehensive data analysis. A whole number of methods based on machine learning (ML) and neural networks was developed during the construction of the experiment and a few others are under active development. Here we provide a brief review of the ML-based methods already implemented in the instrument and the ground software and report preliminary results on the ML-based reconstruction of UHECR parameters for the fluorescence telescope.","PeriodicalId":448458,"journal":{"name":"Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Techniques for the EUSO-SPB2 Fluorescence Telescope\",\"authors\":\"G. Filippatos, M. Zotov\",\"doi\":\"10.22323/1.444.0234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) is the most advanced balloon mission undertaken by the JEM-EUSO collaboration. EUSO-SPB2 is built on the experience of previous stratosphere missions, EUSO-Balloon and EUSO-SPB, and of the Mini-EUSO space mission currently active onboard the International Space Station. EUSO- SPB2 is equipped with two instruments: a fluorescence telescope aimed at registering ultra-high energy cosmic rays (UHECRs) with an energy above 2 EeV and a Cherenkov telescope built to measure direct Cherenkov emission from cosmic rays with energies above 1 PeV. The EUSO-SPB2 mission will provide pioneering observations on the path towards a space-based multi-messenger observatory. As such, a special attention was paid to the development of triggers and other software aimed at comprehensive data analysis. A whole number of methods based on machine learning (ML) and neural networks was developed during the construction of the experiment and a few others are under active development. Here we provide a brief review of the ML-based methods already implemented in the instrument and the ground software and report preliminary results on the ML-based reconstruction of UHECR parameters for the fluorescence telescope.\",\"PeriodicalId\":448458,\"journal\":{\"name\":\"Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.444.0234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.444.0234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Techniques for the EUSO-SPB2 Fluorescence Telescope
The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) is the most advanced balloon mission undertaken by the JEM-EUSO collaboration. EUSO-SPB2 is built on the experience of previous stratosphere missions, EUSO-Balloon and EUSO-SPB, and of the Mini-EUSO space mission currently active onboard the International Space Station. EUSO- SPB2 is equipped with two instruments: a fluorescence telescope aimed at registering ultra-high energy cosmic rays (UHECRs) with an energy above 2 EeV and a Cherenkov telescope built to measure direct Cherenkov emission from cosmic rays with energies above 1 PeV. The EUSO-SPB2 mission will provide pioneering observations on the path towards a space-based multi-messenger observatory. As such, a special attention was paid to the development of triggers and other software aimed at comprehensive data analysis. A whole number of methods based on machine learning (ML) and neural networks was developed during the construction of the experiment and a few others are under active development. Here we provide a brief review of the ML-based methods already implemented in the instrument and the ground software and report preliminary results on the ML-based reconstruction of UHECR parameters for the fluorescence telescope.