Jean-Yves Lionel Lawson, Mathieu Coterot, C. Carincotte, B. Macq
{"title":"基于组件的后wimp交互的高保真交互原型","authors":"Jean-Yves Lionel Lawson, Mathieu Coterot, C. Carincotte, B. Macq","doi":"10.1145/1891903.1891961","DOIUrl":null,"url":null,"abstract":"In order to support interactive high-fidelity prototyping of post-WIMP user interactions, we propose a multi-fidelity design method based on a unifying component-based model and supported by an advanced tool suite, the OpenInterface Platform Workbench. Our approach strives for supporting a collaborative (programmer-designer) and user-centered design activity. The workbench architecture allows exploration of novel interaction techniques through seamless integration and adaptation of heterogeneous components, high-fidelity rapid prototyping, runtime evaluation and fine-tuning of designed systems. This paper illustrates through the iterative construction of a running example how OpenInterface allows the leverage of existing resources and fosters the creation of non-conventional interaction techniques.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Component-based high fidelity interactive prototyping of post-WIMP interactions\",\"authors\":\"Jean-Yves Lionel Lawson, Mathieu Coterot, C. Carincotte, B. Macq\",\"doi\":\"10.1145/1891903.1891961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to support interactive high-fidelity prototyping of post-WIMP user interactions, we propose a multi-fidelity design method based on a unifying component-based model and supported by an advanced tool suite, the OpenInterface Platform Workbench. Our approach strives for supporting a collaborative (programmer-designer) and user-centered design activity. The workbench architecture allows exploration of novel interaction techniques through seamless integration and adaptation of heterogeneous components, high-fidelity rapid prototyping, runtime evaluation and fine-tuning of designed systems. This paper illustrates through the iterative construction of a running example how OpenInterface allows the leverage of existing resources and fosters the creation of non-conventional interaction techniques.\",\"PeriodicalId\":181145,\"journal\":{\"name\":\"ICMI-MLMI '10\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICMI-MLMI '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1891903.1891961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Component-based high fidelity interactive prototyping of post-WIMP interactions
In order to support interactive high-fidelity prototyping of post-WIMP user interactions, we propose a multi-fidelity design method based on a unifying component-based model and supported by an advanced tool suite, the OpenInterface Platform Workbench. Our approach strives for supporting a collaborative (programmer-designer) and user-centered design activity. The workbench architecture allows exploration of novel interaction techniques through seamless integration and adaptation of heterogeneous components, high-fidelity rapid prototyping, runtime evaluation and fine-tuning of designed systems. This paper illustrates through the iterative construction of a running example how OpenInterface allows the leverage of existing resources and fosters the creation of non-conventional interaction techniques.