I.C.S. Ileperuma, H.M.Y.V. Gunathilake, K.P.A.P. Dilshan, S.A.D.S. Nishali, A. I. Gamage, Y. Priyadarshana
{"title":"基于深度神经网络的增强虚拟试衣间","authors":"I.C.S. Ileperuma, H.M.Y.V. Gunathilake, K.P.A.P. Dilshan, S.A.D.S. Nishali, A. I. Gamage, Y. Priyadarshana","doi":"10.1109/icac51239.2020.9357160","DOIUrl":null,"url":null,"abstract":"As the customer's experience in present fit-on rooms is considered as an essential part of the textile industry, these fit-on rooms play a huge role in the textile shops. It is quite an arduous method and generates problems like long queues, having to change clothes individually, privacy problems and wasting time. The proposed convolutional neural network-based Virtual Fit-on Room helps to prevent the above mentioned problems. This product contains a TV screen, two web cameras, and a PC. It captures the customer's body by using two web cameras and displays the customer's dressed body. The combination of CNN in Deep learning and AR processes the body detection and generates the customer's dressed object. The application uses the stereo vision concept to get body measurements. The system detects customer age, gender, face type, and skin tones which are used to recommend cloth styles to customers. Another requirement of this system is customizing styles according to the customer requirements and suggests different styles of clothes. The system achieved 99% accuracy when suggesting different styles using FFNN. Customers can choose clothes for another person who does not physically appear with the customer in the textile shop. The expected output delivers the most realistic dressed object to the customer which allows the efficient customizations for the textile products according to customer requirements. This product can highly influence the textile and fashion industry. Therefore, this product is suitable to compete with other applications in the industry.","PeriodicalId":253040,"journal":{"name":"2020 2nd International Conference on Advancements in Computing (ICAC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Enhanced Virtual Fitting Room using Deep Neural Networks\",\"authors\":\"I.C.S. Ileperuma, H.M.Y.V. Gunathilake, K.P.A.P. Dilshan, S.A.D.S. Nishali, A. I. Gamage, Y. Priyadarshana\",\"doi\":\"10.1109/icac51239.2020.9357160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the customer's experience in present fit-on rooms is considered as an essential part of the textile industry, these fit-on rooms play a huge role in the textile shops. It is quite an arduous method and generates problems like long queues, having to change clothes individually, privacy problems and wasting time. The proposed convolutional neural network-based Virtual Fit-on Room helps to prevent the above mentioned problems. This product contains a TV screen, two web cameras, and a PC. It captures the customer's body by using two web cameras and displays the customer's dressed body. The combination of CNN in Deep learning and AR processes the body detection and generates the customer's dressed object. The application uses the stereo vision concept to get body measurements. The system detects customer age, gender, face type, and skin tones which are used to recommend cloth styles to customers. Another requirement of this system is customizing styles according to the customer requirements and suggests different styles of clothes. The system achieved 99% accuracy when suggesting different styles using FFNN. Customers can choose clothes for another person who does not physically appear with the customer in the textile shop. The expected output delivers the most realistic dressed object to the customer which allows the efficient customizations for the textile products according to customer requirements. This product can highly influence the textile and fashion industry. Therefore, this product is suitable to compete with other applications in the industry.\",\"PeriodicalId\":253040,\"journal\":{\"name\":\"2020 2nd International Conference on Advancements in Computing (ICAC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Advancements in Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icac51239.2020.9357160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icac51239.2020.9357160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Enhanced Virtual Fitting Room using Deep Neural Networks
As the customer's experience in present fit-on rooms is considered as an essential part of the textile industry, these fit-on rooms play a huge role in the textile shops. It is quite an arduous method and generates problems like long queues, having to change clothes individually, privacy problems and wasting time. The proposed convolutional neural network-based Virtual Fit-on Room helps to prevent the above mentioned problems. This product contains a TV screen, two web cameras, and a PC. It captures the customer's body by using two web cameras and displays the customer's dressed body. The combination of CNN in Deep learning and AR processes the body detection and generates the customer's dressed object. The application uses the stereo vision concept to get body measurements. The system detects customer age, gender, face type, and skin tones which are used to recommend cloth styles to customers. Another requirement of this system is customizing styles according to the customer requirements and suggests different styles of clothes. The system achieved 99% accuracy when suggesting different styles using FFNN. Customers can choose clothes for another person who does not physically appear with the customer in the textile shop. The expected output delivers the most realistic dressed object to the customer which allows the efficient customizations for the textile products according to customer requirements. This product can highly influence the textile and fashion industry. Therefore, this product is suitable to compete with other applications in the industry.