基于神经模糊的电子学习质量模型

L. Arafeh
{"title":"基于神经模糊的电子学习质量模型","authors":"L. Arafeh","doi":"10.1504/IJAISC.2017.10005612","DOIUrl":null,"url":null,"abstract":"Higher education institutions are increasingly implementing eLearning means to meet the increasing demand of students' enrolment. Current eLearning quality models have been reviewed. A two-stage softcomputing eLearning quality model, SCeQLM, is proposed. The SCeQLM model is based on ten critical success factors (CSFs). Characteristics of each CSF are modelled, the outputs input into the second stage, to produce the overall output of the SCeLQM model. This output will be either low, satisfactory, good or high. To validate the adequacy of these models, correlation coefficient and mean absolute percentage error (MAPE) have been used. We achieved correlation coefficients values of higher than 0.9905 and MAPE values lower than 1.722 for all the models. The promising results indicate the relevance to apply the modelling techniques, neurofuzzy, for this type of problems. As a future work, our goal will be to further investigate, enhance and develop a web-based SCeLQM version.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neurofuzzy-based quality of eLearning model\",\"authors\":\"L. Arafeh\",\"doi\":\"10.1504/IJAISC.2017.10005612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher education institutions are increasingly implementing eLearning means to meet the increasing demand of students' enrolment. Current eLearning quality models have been reviewed. A two-stage softcomputing eLearning quality model, SCeQLM, is proposed. The SCeQLM model is based on ten critical success factors (CSFs). Characteristics of each CSF are modelled, the outputs input into the second stage, to produce the overall output of the SCeLQM model. This output will be either low, satisfactory, good or high. To validate the adequacy of these models, correlation coefficient and mean absolute percentage error (MAPE) have been used. We achieved correlation coefficients values of higher than 0.9905 and MAPE values lower than 1.722 for all the models. The promising results indicate the relevance to apply the modelling techniques, neurofuzzy, for this type of problems. As a future work, our goal will be to further investigate, enhance and develop a web-based SCeLQM version.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2017.10005612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2017.10005612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高等教育机构越来越多地采用电子学习手段来满足学生日益增长的入学需求。对当前的电子学习质量模型进行了回顾。提出了一种两阶段的软件计算在线学习质量模型SCeQLM。SCeQLM模型基于十个关键成功因素(csf)。对每个CSF的特征进行建模,将输出输入到第二阶段,以产生SCeLQM模型的总体输出。输出可能是低的、满意的、好的或高的。为了验证这些模型的充分性,使用了相关系数和平均绝对百分比误差(MAPE)。所有模型的相关系数均大于0.9905,MAPE值均小于1.722。有希望的结果表明,应用建模技术,神经模糊,这类问题的相关性。作为未来的工作,我们的目标将是进一步研究、增强和开发基于网络的SCeLQM版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neurofuzzy-based quality of eLearning model
Higher education institutions are increasingly implementing eLearning means to meet the increasing demand of students' enrolment. Current eLearning quality models have been reviewed. A two-stage softcomputing eLearning quality model, SCeQLM, is proposed. The SCeQLM model is based on ten critical success factors (CSFs). Characteristics of each CSF are modelled, the outputs input into the second stage, to produce the overall output of the SCeLQM model. This output will be either low, satisfactory, good or high. To validate the adequacy of these models, correlation coefficient and mean absolute percentage error (MAPE) have been used. We achieved correlation coefficients values of higher than 0.9905 and MAPE values lower than 1.722 for all the models. The promising results indicate the relevance to apply the modelling techniques, neurofuzzy, for this type of problems. As a future work, our goal will be to further investigate, enhance and develop a web-based SCeLQM version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信