有限情况下的后继不变性

Benjamin Rossman
{"title":"有限情况下的后继不变性","authors":"Benjamin Rossman","doi":"10.1109/LICS.2003.1210054","DOIUrl":null,"url":null,"abstract":"A first-order sentence /spl theta/ of vocabulary /spl sigma/ /spl cup/ {S} is successor-invariant in the finite if for every finite /spl sigma/-structure M and successor relations S/sub 1/ and S/sub 2/ on M, (M, S/sub 1/) /spl vDash/ /spl theta/ /spl hArr/ (M, S/sub 2/) /spl vDash/ /spl theta/. In this paper I give an example of a non-first-order definable class of finite structures, which is, however, defined by a successor-invariant first-order sentence. This strengthens a corresponding result for order-invariant in the finite, due to Y. Gurevich.","PeriodicalId":280809,"journal":{"name":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Successor-invariance in the finite\",\"authors\":\"Benjamin Rossman\",\"doi\":\"10.1109/LICS.2003.1210054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A first-order sentence /spl theta/ of vocabulary /spl sigma/ /spl cup/ {S} is successor-invariant in the finite if for every finite /spl sigma/-structure M and successor relations S/sub 1/ and S/sub 2/ on M, (M, S/sub 1/) /spl vDash/ /spl theta/ /spl hArr/ (M, S/sub 2/) /spl vDash/ /spl theta/. In this paper I give an example of a non-first-order definable class of finite structures, which is, however, defined by a successor-invariant first-order sentence. This strengthens a corresponding result for order-invariant in the finite, due to Y. Gurevich.\",\"PeriodicalId\":280809,\"journal\":{\"name\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2003.1210054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2003.1210054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

词汇/spl sigma/ /spl cup/ {S}的一阶句子/spl theta/对于每一个有限的/spl sigma/-结构M和M上的后继关系S/sub 1/和S/sub 2/, (M, S/sub 1/) /spl vDash/ /spl theta/ /spl hArr/ (M, S/sub 2/) /spl vDash/ /spl theta/ /spl theta/,在有限if中是后继不变的。本文给出了一类有限结构的非一阶可定义的例子,然而,它是由一个后继不变的一阶句子来定义的。这加强了Y. Gurevich在有限条件下的阶不变的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Successor-invariance in the finite
A first-order sentence /spl theta/ of vocabulary /spl sigma/ /spl cup/ {S} is successor-invariant in the finite if for every finite /spl sigma/-structure M and successor relations S/sub 1/ and S/sub 2/ on M, (M, S/sub 1/) /spl vDash/ /spl theta/ /spl hArr/ (M, S/sub 2/) /spl vDash/ /spl theta/. In this paper I give an example of a non-first-order definable class of finite structures, which is, however, defined by a successor-invariant first-order sentence. This strengthens a corresponding result for order-invariant in the finite, due to Y. Gurevich.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信