用光容积脉搏波传感器超短期记录的精神压力评估

Muhammad Zubair, Changwoo Yoon
{"title":"用光容积脉搏波传感器超短期记录的精神压力评估","authors":"Muhammad Zubair, Changwoo Yoon","doi":"10.1109/CCCS.2019.8888131","DOIUrl":null,"url":null,"abstract":"This paper investigates the potential of ultra-short term recordings of a low cost Photoplethysmographic (PPG) sensor to detect multilevel mental stress. For this purpose, we designed an experimental paradigm to induce different level of stress using Mental Arithmetic Tasks (MAT). Stress-related data was acquired with a single low-cost PPG sensor. After estimating pulse rate variability series from 60 seconds long segments of PPG signals, we computed different features based on their reliability for ultra-short term PRV analysis. In order to mitigate the issues of irrelevancy and redundancy among features, we employed a Sequential Forward Floating Selection (SFFS) algorithm to select an optimum feature set. We developed two classifiers based on Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM). The results of the proposed stress detection system produced 92% accuracy with SVM for five level identification of mental stress. In conclusion, we proposed a multilevel stress detection system that has the potential to detect five different mental stress states using the ultra-short recordings of a low-cost PPG sensor.","PeriodicalId":152148,"journal":{"name":"2019 4th International Conference on Computing, Communications and Security (ICCCS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mental Stress Assessment via Ultra-Short-Term Recordings of Photoplethysmographic Sensor\",\"authors\":\"Muhammad Zubair, Changwoo Yoon\",\"doi\":\"10.1109/CCCS.2019.8888131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the potential of ultra-short term recordings of a low cost Photoplethysmographic (PPG) sensor to detect multilevel mental stress. For this purpose, we designed an experimental paradigm to induce different level of stress using Mental Arithmetic Tasks (MAT). Stress-related data was acquired with a single low-cost PPG sensor. After estimating pulse rate variability series from 60 seconds long segments of PPG signals, we computed different features based on their reliability for ultra-short term PRV analysis. In order to mitigate the issues of irrelevancy and redundancy among features, we employed a Sequential Forward Floating Selection (SFFS) algorithm to select an optimum feature set. We developed two classifiers based on Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM). The results of the proposed stress detection system produced 92% accuracy with SVM for five level identification of mental stress. In conclusion, we proposed a multilevel stress detection system that has the potential to detect five different mental stress states using the ultra-short recordings of a low-cost PPG sensor.\",\"PeriodicalId\":152148,\"journal\":{\"name\":\"2019 4th International Conference on Computing, Communications and Security (ICCCS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Computing, Communications and Security (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCS.2019.8888131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Computing, Communications and Security (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCS.2019.8888131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文探讨了一种低成本的光电容积脉搏波(PPG)传感器的超短期记录在检测多层次精神压力方面的潜力。为此,我们设计了一个实验范式来诱导不同程度的心算任务(MAT)压力。应力相关数据通过一个低成本的PPG传感器获得。在估计了60秒长的PPG信号片段的脉冲速率变异性序列后,我们根据其超短期PRV分析的可靠性计算了不同的特征。为了减轻特征之间的不相关和冗余问题,我们采用顺序前向浮动选择(SFFS)算法来选择最优特征集。我们开发了基于二次判别分析(QDA)和支持向量机(SVM)的分类器。结果表明,基于支持向量机的压力检测系统对心理压力的五级识别准确率达到92%。总之,我们提出了一个多层次的压力检测系统,该系统有可能通过低成本PPG传感器的超短记录来检测五种不同的精神压力状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mental Stress Assessment via Ultra-Short-Term Recordings of Photoplethysmographic Sensor
This paper investigates the potential of ultra-short term recordings of a low cost Photoplethysmographic (PPG) sensor to detect multilevel mental stress. For this purpose, we designed an experimental paradigm to induce different level of stress using Mental Arithmetic Tasks (MAT). Stress-related data was acquired with a single low-cost PPG sensor. After estimating pulse rate variability series from 60 seconds long segments of PPG signals, we computed different features based on their reliability for ultra-short term PRV analysis. In order to mitigate the issues of irrelevancy and redundancy among features, we employed a Sequential Forward Floating Selection (SFFS) algorithm to select an optimum feature set. We developed two classifiers based on Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM). The results of the proposed stress detection system produced 92% accuracy with SVM for five level identification of mental stress. In conclusion, we proposed a multilevel stress detection system that has the potential to detect five different mental stress states using the ultra-short recordings of a low-cost PPG sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信