分布式深度强化学习的协同传感覆盖

Tianwei Dai, Z. Ding
{"title":"分布式深度强化学习的协同传感覆盖","authors":"Tianwei Dai, Z. Ding","doi":"10.23919/CCC50068.2020.9188463","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) extends the electronic connectivity into millions of IoT nodes in our city, which collect, share and fuse information to comprehend the status of the city. In order to achieve the autonomy to make control decisions based on the collected and analyzed information, a promising artificial intelligence method, reinforcement learning (RL), is for smart entities to leverage. In this paper, we propose a distributed learning approach using the deep RL method and consensus theories to solve the coordinated sensing coverage problem in wireless sensor and actuator networks. Also, evaluation works show the proposed algorithm emerges powerful capability, and this approach provides important operational advantages over traditional centralized and distributed approaches.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinated Sensing Coverage with Distributed Deep Reinforcement Learning\",\"authors\":\"Tianwei Dai, Z. Ding\",\"doi\":\"10.23919/CCC50068.2020.9188463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) extends the electronic connectivity into millions of IoT nodes in our city, which collect, share and fuse information to comprehend the status of the city. In order to achieve the autonomy to make control decisions based on the collected and analyzed information, a promising artificial intelligence method, reinforcement learning (RL), is for smart entities to leverage. In this paper, we propose a distributed learning approach using the deep RL method and consensus theories to solve the coordinated sensing coverage problem in wireless sensor and actuator networks. Also, evaluation works show the proposed algorithm emerges powerful capability, and this approach provides important operational advantages over traditional centralized and distributed approaches.\",\"PeriodicalId\":255872,\"journal\":{\"name\":\"2020 39th Chinese Control Conference (CCC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CCC50068.2020.9188463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)将电子连接扩展到我们城市的数百万个物联网节点,这些节点收集、共享和融合信息,以了解城市的状态。为了实现基于收集和分析的信息做出控制决策的自主性,智能实体可以利用一种很有前途的人工智能方法——强化学习(RL)。本文提出了一种基于深度强化学习方法和共识理论的分布式学习方法来解决无线传感器和执行器网络中的协调感知覆盖问题。评估工作表明,该算法具有强大的性能,与传统的集中式和分布式方法相比,具有重要的操作优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinated Sensing Coverage with Distributed Deep Reinforcement Learning
The Internet of Things (IoT) extends the electronic connectivity into millions of IoT nodes in our city, which collect, share and fuse information to comprehend the status of the city. In order to achieve the autonomy to make control decisions based on the collected and analyzed information, a promising artificial intelligence method, reinforcement learning (RL), is for smart entities to leverage. In this paper, we propose a distributed learning approach using the deep RL method and consensus theories to solve the coordinated sensing coverage problem in wireless sensor and actuator networks. Also, evaluation works show the proposed algorithm emerges powerful capability, and this approach provides important operational advantages over traditional centralized and distributed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信