(sin^2x)/x的极值的位置和振幅的数值计算和近似

J. Le Bihan
{"title":"(sin^2x)/x的极值的位置和振幅的数值计算和近似","authors":"J. Le Bihan","doi":"10.1109/iccgi.2006.1690290","DOIUrl":null,"url":null,"abstract":"Expressions of the form (sin2x)/x may occur in engineering problems, for instance in signal processing or communications. In this paper, we show that the locations and the amplitudes of the extrema of this function, when expressed under the form of series expansions, can be fastly calculated through recursion formulae. Moreover, very simple accurate algebraic expressions can be derived for evaluating these locations and amplitudes","PeriodicalId":112974,"journal":{"name":"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical computation and approximation of the locations and amplitudes of the extrema of (sin^2x)/x\",\"authors\":\"J. Le Bihan\",\"doi\":\"10.1109/iccgi.2006.1690290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expressions of the form (sin2x)/x may occur in engineering problems, for instance in signal processing or communications. In this paper, we show that the locations and the amplitudes of the extrema of this function, when expressed under the form of series expansions, can be fastly calculated through recursion formulae. Moreover, very simple accurate algebraic expressions can be derived for evaluating these locations and amplitudes\",\"PeriodicalId\":112974,\"journal\":{\"name\":\"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccgi.2006.1690290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccgi.2006.1690290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

(sin2x)/x形式的表达式可能出现在工程问题中,例如在信号处理或通信中。在本文中,我们证明了该函数的极值的位置和幅值,当以级数展开的形式表示时,可以通过递推公式快速计算。此外,可以推导出非常简单准确的代数表达式来计算这些位置和振幅
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical computation and approximation of the locations and amplitudes of the extrema of (sin^2x)/x
Expressions of the form (sin2x)/x may occur in engineering problems, for instance in signal processing or communications. In this paper, we show that the locations and the amplitudes of the extrema of this function, when expressed under the form of series expansions, can be fastly calculated through recursion formulae. Moreover, very simple accurate algebraic expressions can be derived for evaluating these locations and amplitudes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信