基于神经机器翻译的越南文手写文本OCR纠错

D. Q. Nguyen, A. D. Le, M. N. Phan, P. Kromer, I. Zelinka
{"title":"基于神经机器翻译的越南文手写文本OCR纠错","authors":"D. Q. Nguyen, A. D. Le, M. N. Phan, P. Kromer, I. Zelinka","doi":"10.1063/5.0066679","DOIUrl":null,"url":null,"abstract":"OCR post-processing is an important step for improving the quality of OCR output texts. Long short-term memory (LSTM) is a deep learning model, which has wide-range applications in many domains like time series prediction, natural language processing and speech recognition. In this paper, we propose an OCR error correction model using neural machine translation with bidirectional LSTM networks at syllable level. Vietnamese OCR text dataset for the model evaluation is outputted from an OCR engine based on the attention-based encoder-decoder (AED) model taking input of handwritten text in the benchmark database of the ICFHR 2018 Vietnamese online handwritten text recognition competition. The experimental results show that the proposed model helps decrease the word error rate in the OCR output texts of the above AED model by about 2%. The model performance is also discussed and compared to the other baseline methods in the competition.","PeriodicalId":253890,"journal":{"name":"1ST VAN LANG INTERNATIONAL CONFERENCE ON HERITAGE AND TECHNOLOGY CONFERENCE PROCEEDING, 2021: VanLang-HeriTech, 2021","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"OCR error correction for Vietnamese handwritten text using neural machine translation\",\"authors\":\"D. Q. Nguyen, A. D. Le, M. N. Phan, P. Kromer, I. Zelinka\",\"doi\":\"10.1063/5.0066679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OCR post-processing is an important step for improving the quality of OCR output texts. Long short-term memory (LSTM) is a deep learning model, which has wide-range applications in many domains like time series prediction, natural language processing and speech recognition. In this paper, we propose an OCR error correction model using neural machine translation with bidirectional LSTM networks at syllable level. Vietnamese OCR text dataset for the model evaluation is outputted from an OCR engine based on the attention-based encoder-decoder (AED) model taking input of handwritten text in the benchmark database of the ICFHR 2018 Vietnamese online handwritten text recognition competition. The experimental results show that the proposed model helps decrease the word error rate in the OCR output texts of the above AED model by about 2%. The model performance is also discussed and compared to the other baseline methods in the competition.\",\"PeriodicalId\":253890,\"journal\":{\"name\":\"1ST VAN LANG INTERNATIONAL CONFERENCE ON HERITAGE AND TECHNOLOGY CONFERENCE PROCEEDING, 2021: VanLang-HeriTech, 2021\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1ST VAN LANG INTERNATIONAL CONFERENCE ON HERITAGE AND TECHNOLOGY CONFERENCE PROCEEDING, 2021: VanLang-HeriTech, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0066679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1ST VAN LANG INTERNATIONAL CONFERENCE ON HERITAGE AND TECHNOLOGY CONFERENCE PROCEEDING, 2021: VanLang-HeriTech, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0066679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

OCR后处理提高OCR的质量是一个重要的一步输出文本。长短期记忆(LSTM)是一种深度学习模型,在时间序列预测、自然语言处理和语音识别等领域有着广泛的应用。本文提出了一种基于神经机器翻译的音节级双向LSTM网络OCR纠错模型。用于模型评估的越南语OCR文本数据集由OCR引擎输出,该OCR引擎基于基于注意力的编码器-解码器(AED)模型,该模型以ICFHR 2018越南语在线手写文本识别竞赛基准数据库中的手写文本输入为基础。实验结果表明,该模型将上述AED模型OCR输出文本中的单词错误率降低了约2%。本文还讨论了模型的性能,并与其他基准方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OCR error correction for Vietnamese handwritten text using neural machine translation
OCR post-processing is an important step for improving the quality of OCR output texts. Long short-term memory (LSTM) is a deep learning model, which has wide-range applications in many domains like time series prediction, natural language processing and speech recognition. In this paper, we propose an OCR error correction model using neural machine translation with bidirectional LSTM networks at syllable level. Vietnamese OCR text dataset for the model evaluation is outputted from an OCR engine based on the attention-based encoder-decoder (AED) model taking input of handwritten text in the benchmark database of the ICFHR 2018 Vietnamese online handwritten text recognition competition. The experimental results show that the proposed model helps decrease the word error rate in the OCR output texts of the above AED model by about 2%. The model performance is also discussed and compared to the other baseline methods in the competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信