求解二维navier-stokes方程的全局奇异边界法

J. Mužík, R. Bulko
{"title":"求解二维navier-stokes方程的全局奇异边界法","authors":"J. Mužík, R. Bulko","doi":"10.2495/BE420181","DOIUrl":null,"url":null,"abstract":"This article presents a numerical algorithm based on the singular boundary method (SBM) for the incompressible steady Navier–Stokes equations formulated using primitive variables. The SBM with the Stokeslet fundamental solution and dual reciprocity (DR) principle has been chosen to solve the nonlinear flow equations. The particular solution of the non-homogeneous Stokes equations is constructed as a linear combination of implicitly local radial basis function. The simple direct iterative scheme was used to handle nonlinearities of Navier–Stokes equations with a variation of the non-homogeneous term of the particular solution. The non-homogeneous term is formed using the nonlinear convective terms of the momentum equations, evaluated using values from previous iterations. It is found that SBM with a localized DR principle gives reasonable results for numerical problems of lid-driven cavity flow up to Re = 3200, and the backward-facing step at Re = 800.","PeriodicalId":429597,"journal":{"name":"Boundary Elements and other Mesh Reduction Methods XLII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GLOBAL SINGULAR BOUNDARY METHOD FOR SOLVING 2D NAVIER–STOKES EQUATIONS\",\"authors\":\"J. Mužík, R. Bulko\",\"doi\":\"10.2495/BE420181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a numerical algorithm based on the singular boundary method (SBM) for the incompressible steady Navier–Stokes equations formulated using primitive variables. The SBM with the Stokeslet fundamental solution and dual reciprocity (DR) principle has been chosen to solve the nonlinear flow equations. The particular solution of the non-homogeneous Stokes equations is constructed as a linear combination of implicitly local radial basis function. The simple direct iterative scheme was used to handle nonlinearities of Navier–Stokes equations with a variation of the non-homogeneous term of the particular solution. The non-homogeneous term is formed using the nonlinear convective terms of the momentum equations, evaluated using values from previous iterations. It is found that SBM with a localized DR principle gives reasonable results for numerical problems of lid-driven cavity flow up to Re = 3200, and the backward-facing step at Re = 800.\",\"PeriodicalId\":429597,\"journal\":{\"name\":\"Boundary Elements and other Mesh Reduction Methods XLII\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Elements and other Mesh Reduction Methods XLII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/BE420181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Elements and other Mesh Reduction Methods XLII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/BE420181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于奇异边界法(SBM)的不可压缩稳态Navier-Stokes方程的数值求解算法。选择具有Stokeslet基本解和对偶互易原理的SBM来求解非线性流动方程。将非齐次Stokes方程的特解构造为隐式局部径向基函数的线性组合。采用简单直接迭代格式处理了具有特解非齐次项变化的Navier-Stokes方程的非线性问题。非齐次项是由动量方程的非线性对流项形成的,使用以前迭代的值进行评估。结果表明,对于Re = 3200及Re = 800时的后向步进,采用局部DR原理的SBM给出了合理的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GLOBAL SINGULAR BOUNDARY METHOD FOR SOLVING 2D NAVIER–STOKES EQUATIONS
This article presents a numerical algorithm based on the singular boundary method (SBM) for the incompressible steady Navier–Stokes equations formulated using primitive variables. The SBM with the Stokeslet fundamental solution and dual reciprocity (DR) principle has been chosen to solve the nonlinear flow equations. The particular solution of the non-homogeneous Stokes equations is constructed as a linear combination of implicitly local radial basis function. The simple direct iterative scheme was used to handle nonlinearities of Navier–Stokes equations with a variation of the non-homogeneous term of the particular solution. The non-homogeneous term is formed using the nonlinear convective terms of the momentum equations, evaluated using values from previous iterations. It is found that SBM with a localized DR principle gives reasonable results for numerical problems of lid-driven cavity flow up to Re = 3200, and the backward-facing step at Re = 800.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信