基于深度强化学习的弹性网络缓存控制

Chunglae Cho, Seungjae Shin, H. Jeon, Seunghyun Yoon
{"title":"基于深度强化学习的弹性网络缓存控制","authors":"Chunglae Cho, Seungjae Shin, H. Jeon, Seunghyun Yoon","doi":"10.1109/ICTC55196.2022.9952648","DOIUrl":null,"url":null,"abstract":"Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the one hand and minimize the cost of leasing the cache storage on the other hand. This paper presents a caching algorithm using deep reinforcement learning (DRL) that controls the caching policy with the content time-to-live (TTL) values and elastically adjusts the cache size according to a dynamically changing environment to maximize the utility-minus-cost objective. We show that, under non-stationary traffic scenarios, our DRL-based approach outperforms the conventional algorithms known to be optimal under stationary traffic scenarios.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic Network Cache Control Using Deep Reinforcement Learning\",\"authors\":\"Chunglae Cho, Seungjae Shin, H. Jeon, Seunghyun Yoon\",\"doi\":\"10.1109/ICTC55196.2022.9952648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the one hand and minimize the cost of leasing the cache storage on the other hand. This paper presents a caching algorithm using deep reinforcement learning (DRL) that controls the caching policy with the content time-to-live (TTL) values and elastically adjusts the cache size according to a dynamically changing environment to maximize the utility-minus-cost objective. We show that, under non-stationary traffic scenarios, our DRL-based approach outperforms the conventional algorithms known to be optimal under stationary traffic scenarios.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9952648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着虚拟化技术的发展,内容服务提供商在边缘网络中部署缓存节点时,可以灵活地向基础设施服务提供商租用虚拟化资源。因此,它们有两个相互正交的目标:一方面最大化缓存效用,另一方面最小化租用缓存存储的成本。本文提出了一种使用深度强化学习(DRL)的缓存算法,该算法通过内容生存时间(TTL)值控制缓存策略,并根据动态变化的环境弹性调整缓存大小,以最大化效用-成本目标。我们表明,在非平稳交通场景下,我们基于drl的方法优于已知的在平稳交通场景下最优的传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic Network Cache Control Using Deep Reinforcement Learning
Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the one hand and minimize the cost of leasing the cache storage on the other hand. This paper presents a caching algorithm using deep reinforcement learning (DRL) that controls the caching policy with the content time-to-live (TTL) values and elastically adjusts the cache size according to a dynamically changing environment to maximize the utility-minus-cost objective. We show that, under non-stationary traffic scenarios, our DRL-based approach outperforms the conventional algorithms known to be optimal under stationary traffic scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信