基于深度强化学习的动态无状态组播机制

Lie Lu, Qing Li, Dan Zhao, Yuan Yang, Zeyu Luan, Jianer Zhou, Yong Jiang, Mingwei Xu
{"title":"基于深度强化学习的动态无状态组播机制","authors":"Lie Lu, Qing Li, Dan Zhao, Yuan Yang, Zeyu Luan, Jianer Zhou, Yong Jiang, Mingwei Xu","doi":"10.1109/INFOCOM53939.2023.10228869","DOIUrl":null,"url":null,"abstract":"Multicast traffic is growing rapidly due to the development of multimedia streaming. Lately, stateless multicast protocols, such as BIER, have been proposed to solve the excessive routing states problem of traditional multicast protocols. However, the high complexity of multicast tree computation and the limited scalability for concurrent requests still pose daunting challenges, especially under dynamic group membership. In this paper, we propose Hawkeye, a dynamic and stateless multicast mechanism with deep reinforcement learning (DRL) approach. For real-time responses to multicast requests, we leverage DRL enhanced by a temporal convolutional network (TCN) to model the sequential feature of dynamic group membership and thus is able to build multicast trees proactively for upcoming requests. Moreover, an innovative source aggregation mechanism is designed to help the DRL agent converge when faced with a large amount of multicast requests, and relieve ingress routers from excessive routing states. Evaluation with real-world topologies and multicast requests demonstrates that Hawkeye adapts well to dynamic multicast: it reduces the variation of path latency by up to 89.5% with less than 12% additional bandwidth consumption compared with the theoretical optimum.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hawkeye: A Dynamic and Stateless Multicast Mechanism with Deep Reinforcement Learning\",\"authors\":\"Lie Lu, Qing Li, Dan Zhao, Yuan Yang, Zeyu Luan, Jianer Zhou, Yong Jiang, Mingwei Xu\",\"doi\":\"10.1109/INFOCOM53939.2023.10228869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multicast traffic is growing rapidly due to the development of multimedia streaming. Lately, stateless multicast protocols, such as BIER, have been proposed to solve the excessive routing states problem of traditional multicast protocols. However, the high complexity of multicast tree computation and the limited scalability for concurrent requests still pose daunting challenges, especially under dynamic group membership. In this paper, we propose Hawkeye, a dynamic and stateless multicast mechanism with deep reinforcement learning (DRL) approach. For real-time responses to multicast requests, we leverage DRL enhanced by a temporal convolutional network (TCN) to model the sequential feature of dynamic group membership and thus is able to build multicast trees proactively for upcoming requests. Moreover, an innovative source aggregation mechanism is designed to help the DRL agent converge when faced with a large amount of multicast requests, and relieve ingress routers from excessive routing states. Evaluation with real-world topologies and multicast requests demonstrates that Hawkeye adapts well to dynamic multicast: it reduces the variation of path latency by up to 89.5% with less than 12% additional bandwidth consumption compared with the theoretical optimum.\",\"PeriodicalId\":387707,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM53939.2023.10228869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10228869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着多媒体流媒体技术的发展,组播流量迅速增长。近年来,为了解决传统组播协议路由状态过多的问题,提出了BIER等无状态组播协议。然而,组播树计算的高复杂性和对并发请求的有限可扩展性仍然是令人气馁的挑战,特别是在动态组成员的情况下。本文提出了一种基于深度强化学习(DRL)的动态无状态组播机制Hawkeye。对于多播请求的实时响应,我们利用时序卷积网络(TCN)增强的DRL来建模动态组成员的顺序特征,从而能够为即将到来的请求主动构建多播树。此外,还设计了一种新颖的源聚合机制,帮助DRL代理在面对大量组播请求时收敛,缓解入站路由器过多的路由状态。对实际拓扑和组播请求的评估表明,Hawkeye很好地适应了动态组播:与理论最优值相比,它将路径延迟的变化减少了89.5%,而额外的带宽消耗不到12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hawkeye: A Dynamic and Stateless Multicast Mechanism with Deep Reinforcement Learning
Multicast traffic is growing rapidly due to the development of multimedia streaming. Lately, stateless multicast protocols, such as BIER, have been proposed to solve the excessive routing states problem of traditional multicast protocols. However, the high complexity of multicast tree computation and the limited scalability for concurrent requests still pose daunting challenges, especially under dynamic group membership. In this paper, we propose Hawkeye, a dynamic and stateless multicast mechanism with deep reinforcement learning (DRL) approach. For real-time responses to multicast requests, we leverage DRL enhanced by a temporal convolutional network (TCN) to model the sequential feature of dynamic group membership and thus is able to build multicast trees proactively for upcoming requests. Moreover, an innovative source aggregation mechanism is designed to help the DRL agent converge when faced with a large amount of multicast requests, and relieve ingress routers from excessive routing states. Evaluation with real-world topologies and multicast requests demonstrates that Hawkeye adapts well to dynamic multicast: it reduces the variation of path latency by up to 89.5% with less than 12% additional bandwidth consumption compared with the theoretical optimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信