参数多态的类型化范式双仿真

Søren B. Lassen, P. Levy
{"title":"参数多态的类型化范式双仿真","authors":"Søren B. Lassen, P. Levy","doi":"10.1109/LICS.2008.26","DOIUrl":null,"url":null,"abstract":"This paper presents a new bisimulation theory for parametric polymorphism which enables straight forward co-inductive proofs of program equivalences involving existential types. The theory is an instance of typed normal form bisimulation and demonstrates the power of this recent framework for modeling typed lambda calculi as labelled transition systems.We develop our theory for a continuation-passing style calculus, Jump-With-Argument, where normal form bisimulation takes a simple form. We equip the calculus with both existential and recursive types. An \"ultimate pattern matching theorem\" enables us to define bisimilarity and we show it to be a congruence. We apply our theory to proving program equivalences, type isomorphisms and genericity.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Typed Normal Form Bisimulation for Parametric Polymorphism\",\"authors\":\"Søren B. Lassen, P. Levy\",\"doi\":\"10.1109/LICS.2008.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new bisimulation theory for parametric polymorphism which enables straight forward co-inductive proofs of program equivalences involving existential types. The theory is an instance of typed normal form bisimulation and demonstrates the power of this recent framework for modeling typed lambda calculi as labelled transition systems.We develop our theory for a continuation-passing style calculus, Jump-With-Argument, where normal form bisimulation takes a simple form. We equip the calculus with both existential and recursive types. An \\\"ultimate pattern matching theorem\\\" enables us to define bisimilarity and we show it to be a congruence. We apply our theory to proving program equivalences, type isomorphisms and genericity.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文提出了一种新的参数多态双模拟理论,它可以直接对存在类型的程序等价进行共归纳证明。该理论是类型化范式双模拟的一个实例,并展示了将类型化lambda演算建模为标记转换系统的最新框架的强大功能。我们发展了一个连续传递式演算的理论,带参数跳跃,其中范式双模拟采用简单形式。我们用存在和递归两种类型来装备微积分。一个“终极模式匹配定理”使我们能够定义双相似性,并证明它是一个同余。我们将该理论应用于证明程序等价、类型同构和泛型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Typed Normal Form Bisimulation for Parametric Polymorphism
This paper presents a new bisimulation theory for parametric polymorphism which enables straight forward co-inductive proofs of program equivalences involving existential types. The theory is an instance of typed normal form bisimulation and demonstrates the power of this recent framework for modeling typed lambda calculi as labelled transition systems.We develop our theory for a continuation-passing style calculus, Jump-With-Argument, where normal form bisimulation takes a simple form. We equip the calculus with both existential and recursive types. An "ultimate pattern matching theorem" enables us to define bisimilarity and we show it to be a congruence. We apply our theory to proving program equivalences, type isomorphisms and genericity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信