{"title":"物理通知自监督学习在稀疏和噪声数据环境下的故障诊断和预测","authors":"Weikun Deng, K. Nguyen, K. Medjaher","doi":"10.36001/phme.2022.v7i1.3298","DOIUrl":null,"url":null,"abstract":"Sparse & noisy monitoring data leads to numerous challenges in prognostic and health management (PHM). Big data volume but poor quality with scarce healthy states information limits the performance of training machine learning (ML) and physics-based failure modeling. To address these challenges, this thesis aims to develop a new hybrid PHM framework with the ability to autonomously discover and exploit incomplete implicit physics knowledge in sparse & noisy monitoring data, providing a solution for deep physics knowledge-ML fusion by physics-informed machine learning algorithms. In addition, the developed hybrid framework also applies the self-supervised learning paradigm to significantly improve the learning performance under uncertain, sparse, and noisy data with lower requirements for specialist area knowledge. The performance of the developed algorithms will be investigated on the sparse and noise data generated by simulation data sets, public benchmark data sets, and the PHM platform to demonstrate its applicability.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics Informed Self Supervised Learning For Fault Diagnostics and Prognostics in the Context of Sparse and Noisy Data\",\"authors\":\"Weikun Deng, K. Nguyen, K. Medjaher\",\"doi\":\"10.36001/phme.2022.v7i1.3298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse & noisy monitoring data leads to numerous challenges in prognostic and health management (PHM). Big data volume but poor quality with scarce healthy states information limits the performance of training machine learning (ML) and physics-based failure modeling. To address these challenges, this thesis aims to develop a new hybrid PHM framework with the ability to autonomously discover and exploit incomplete implicit physics knowledge in sparse & noisy monitoring data, providing a solution for deep physics knowledge-ML fusion by physics-informed machine learning algorithms. In addition, the developed hybrid framework also applies the self-supervised learning paradigm to significantly improve the learning performance under uncertain, sparse, and noisy data with lower requirements for specialist area knowledge. The performance of the developed algorithms will be investigated on the sparse and noise data generated by simulation data sets, public benchmark data sets, and the PHM platform to demonstrate its applicability.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physics Informed Self Supervised Learning For Fault Diagnostics and Prognostics in the Context of Sparse and Noisy Data
Sparse & noisy monitoring data leads to numerous challenges in prognostic and health management (PHM). Big data volume but poor quality with scarce healthy states information limits the performance of training machine learning (ML) and physics-based failure modeling. To address these challenges, this thesis aims to develop a new hybrid PHM framework with the ability to autonomously discover and exploit incomplete implicit physics knowledge in sparse & noisy monitoring data, providing a solution for deep physics knowledge-ML fusion by physics-informed machine learning algorithms. In addition, the developed hybrid framework also applies the self-supervised learning paradigm to significantly improve the learning performance under uncertain, sparse, and noisy data with lower requirements for specialist area knowledge. The performance of the developed algorithms will be investigated on the sparse and noise data generated by simulation data sets, public benchmark data sets, and the PHM platform to demonstrate its applicability.