识别脉冲神经网络的高效数据流

Deepika Sharma, Aayush Ankit, K. Roy
{"title":"识别脉冲神经网络的高效数据流","authors":"Deepika Sharma, Aayush Ankit, K. Roy","doi":"10.1145/3531437.3539704","DOIUrl":null,"url":null,"abstract":"Deep feed-forward Spiking Neural Networks (SNNs) trained using appropriate learning algorithms have been shown to match the performance of state-of-the-art Artificial Neural Networks (ANNs). The inputs to an SNN layer are 1-bit spikes distributed over several timesteps. In addition, along with the standard artificial neural network (ANN) data structures, SNNs require one additional data structure – the membrane potential (Vmem) for each neuron which is updated every timestep. Hence, the dataflow requirements for energy-efficient hardware implementation of SNNs can be different from the standard ANNs. In this paper, we propose optimal dataflows for deep spiking neural network layers. To evaluate the energy and latency of different dataflows, we considered three hardware architectures with varying on-chip resources to represent a class of spatial accelerators. We developed a set of rules leading to optimum dataflow for SNNs that achieve more than 90% improvement in Energy-Delay Product (EDP) compared to the baseline for some workloads and architectures.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identifying Efficient Dataflows for Spiking Neural Networks\",\"authors\":\"Deepika Sharma, Aayush Ankit, K. Roy\",\"doi\":\"10.1145/3531437.3539704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep feed-forward Spiking Neural Networks (SNNs) trained using appropriate learning algorithms have been shown to match the performance of state-of-the-art Artificial Neural Networks (ANNs). The inputs to an SNN layer are 1-bit spikes distributed over several timesteps. In addition, along with the standard artificial neural network (ANN) data structures, SNNs require one additional data structure – the membrane potential (Vmem) for each neuron which is updated every timestep. Hence, the dataflow requirements for energy-efficient hardware implementation of SNNs can be different from the standard ANNs. In this paper, we propose optimal dataflows for deep spiking neural network layers. To evaluate the energy and latency of different dataflows, we considered three hardware architectures with varying on-chip resources to represent a class of spatial accelerators. We developed a set of rules leading to optimum dataflow for SNNs that achieve more than 90% improvement in Energy-Delay Product (EDP) compared to the baseline for some workloads and architectures.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用适当的学习算法训练的深度前馈脉冲神经网络(SNNs)已被证明与最先进的人工神经网络(ann)的性能相匹配。SNN层的输入是分布在几个时间步长的1位尖峰。此外,除了标准的人工神经网络(ANN)数据结构外,snn还需要一个额外的数据结构-每个神经元的膜电位(Vmem),该数据结构在每个时间步长更新。因此,snn对节能硬件实现的数据流要求可能与标准ann不同。在本文中,我们提出了深度尖峰神经网络层的最优数据流。为了评估不同数据流的能量和延迟,我们考虑了三种具有不同片上资源的硬件架构来表示一类空间加速器。我们为snn开发了一套优化数据流的规则,与某些工作负载和架构的基线相比,snn的能量延迟产品(EDP)提高了90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Efficient Dataflows for Spiking Neural Networks
Deep feed-forward Spiking Neural Networks (SNNs) trained using appropriate learning algorithms have been shown to match the performance of state-of-the-art Artificial Neural Networks (ANNs). The inputs to an SNN layer are 1-bit spikes distributed over several timesteps. In addition, along with the standard artificial neural network (ANN) data structures, SNNs require one additional data structure – the membrane potential (Vmem) for each neuron which is updated every timestep. Hence, the dataflow requirements for energy-efficient hardware implementation of SNNs can be different from the standard ANNs. In this paper, we propose optimal dataflows for deep spiking neural network layers. To evaluate the energy and latency of different dataflows, we considered three hardware architectures with varying on-chip resources to represent a class of spatial accelerators. We developed a set of rules leading to optimum dataflow for SNNs that achieve more than 90% improvement in Energy-Delay Product (EDP) compared to the baseline for some workloads and architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信