{"title":"基于马尔可夫签名的IP流分类方法","authors":"H. Dahmouni, Sandrine Vaton, D. Rossé","doi":"10.1145/1269880.1269889","DOIUrl":null,"url":null,"abstract":"In this paper we present a real-time automatic process to traffic classification and to the detection of abnormal behaviors in IP traffic. The proposed method aims to detect anomalies in the traffic associated to a particular service, or to automatically recognize the service associated to a given sequence of packets at the transport layer. Service classification is becoming a central issue because of the emergence of new services (P2P, VoIP, Streaming video, etc...) which raises new challenges in resource reservation, pricing, network monitoring, etc... In order to identify a specific signature to an application, we first of all model the sequence of its packets at the transport layer by means of a first order Markov chain. Then, we decide which service should be associated to any new sequence by means of standard decision techniques (Maximum Likelihood criterion, Neyman-Pearson test). The evaluation of our automatic recognition procedure using live GPRS Orange France traffic traces demonstrates the feasibility and the excellent performance of this approach.","PeriodicalId":216113,"journal":{"name":"Annual ACM Workshop on Mining Network Data","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A markovian signature-based approach to IP traffic classification\",\"authors\":\"H. Dahmouni, Sandrine Vaton, D. Rossé\",\"doi\":\"10.1145/1269880.1269889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a real-time automatic process to traffic classification and to the detection of abnormal behaviors in IP traffic. The proposed method aims to detect anomalies in the traffic associated to a particular service, or to automatically recognize the service associated to a given sequence of packets at the transport layer. Service classification is becoming a central issue because of the emergence of new services (P2P, VoIP, Streaming video, etc...) which raises new challenges in resource reservation, pricing, network monitoring, etc... In order to identify a specific signature to an application, we first of all model the sequence of its packets at the transport layer by means of a first order Markov chain. Then, we decide which service should be associated to any new sequence by means of standard decision techniques (Maximum Likelihood criterion, Neyman-Pearson test). The evaluation of our automatic recognition procedure using live GPRS Orange France traffic traces demonstrates the feasibility and the excellent performance of this approach.\",\"PeriodicalId\":216113,\"journal\":{\"name\":\"Annual ACM Workshop on Mining Network Data\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual ACM Workshop on Mining Network Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1269880.1269889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual ACM Workshop on Mining Network Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1269880.1269889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A markovian signature-based approach to IP traffic classification
In this paper we present a real-time automatic process to traffic classification and to the detection of abnormal behaviors in IP traffic. The proposed method aims to detect anomalies in the traffic associated to a particular service, or to automatically recognize the service associated to a given sequence of packets at the transport layer. Service classification is becoming a central issue because of the emergence of new services (P2P, VoIP, Streaming video, etc...) which raises new challenges in resource reservation, pricing, network monitoring, etc... In order to identify a specific signature to an application, we first of all model the sequence of its packets at the transport layer by means of a first order Markov chain. Then, we decide which service should be associated to any new sequence by means of standard decision techniques (Maximum Likelihood criterion, Neyman-Pearson test). The evaluation of our automatic recognition procedure using live GPRS Orange France traffic traces demonstrates the feasibility and the excellent performance of this approach.