{"title":"小蜂窝网络上可扩展视频的质量驱动的主动缓存","authors":"Tong Zhen, Yuedong Xu, Tao Yang, Bo Hu","doi":"10.1109/MSN.2016.023","DOIUrl":null,"url":null,"abstract":"The explosion of mobile video traffic imposes tremendous challenges on present cellular networks. To alleviate the pressure on backhaul links and to enhance the quality of experience (QoE) of video streaming service, small cell base stations (SBS) with caching ability are introduced to assist the content delivery. In this paper, we present the first study on the optimal caching strategy of scalable video coding (SVC) streaming in small cell networks with the consideration of channel diversity and video scalability. We formulate an integer programming problem to maximize the average subjective quality of SVC streaming under the constraint of cache size at each SBS. By establishing connections between subjective quality and caching state of each video, we simplify the proactive caching of SVC as a multiple-choice knapsack problem (MCKP), and propose a low-complexity algorithm using dynamic programming. Our proactive caching strategy reveals the structural properties of cache allocation to each video based on their popularity profiles. Simulation results manifest that the SBSs with caching ability can greatly improve the average quality of SVC streaming, and that our proposed caching strategy acquires significant performance gain compared with other conventional caching policies.","PeriodicalId":135328,"journal":{"name":"2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Quality-Driven Proactive Caching of Scalable Videos over Small Cell Networks\",\"authors\":\"Tong Zhen, Yuedong Xu, Tao Yang, Bo Hu\",\"doi\":\"10.1109/MSN.2016.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosion of mobile video traffic imposes tremendous challenges on present cellular networks. To alleviate the pressure on backhaul links and to enhance the quality of experience (QoE) of video streaming service, small cell base stations (SBS) with caching ability are introduced to assist the content delivery. In this paper, we present the first study on the optimal caching strategy of scalable video coding (SVC) streaming in small cell networks with the consideration of channel diversity and video scalability. We formulate an integer programming problem to maximize the average subjective quality of SVC streaming under the constraint of cache size at each SBS. By establishing connections between subjective quality and caching state of each video, we simplify the proactive caching of SVC as a multiple-choice knapsack problem (MCKP), and propose a low-complexity algorithm using dynamic programming. Our proactive caching strategy reveals the structural properties of cache allocation to each video based on their popularity profiles. Simulation results manifest that the SBSs with caching ability can greatly improve the average quality of SVC streaming, and that our proposed caching strategy acquires significant performance gain compared with other conventional caching policies.\",\"PeriodicalId\":135328,\"journal\":{\"name\":\"2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSN.2016.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN.2016.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quality-Driven Proactive Caching of Scalable Videos over Small Cell Networks
The explosion of mobile video traffic imposes tremendous challenges on present cellular networks. To alleviate the pressure on backhaul links and to enhance the quality of experience (QoE) of video streaming service, small cell base stations (SBS) with caching ability are introduced to assist the content delivery. In this paper, we present the first study on the optimal caching strategy of scalable video coding (SVC) streaming in small cell networks with the consideration of channel diversity and video scalability. We formulate an integer programming problem to maximize the average subjective quality of SVC streaming under the constraint of cache size at each SBS. By establishing connections between subjective quality and caching state of each video, we simplify the proactive caching of SVC as a multiple-choice knapsack problem (MCKP), and propose a low-complexity algorithm using dynamic programming. Our proactive caching strategy reveals the structural properties of cache allocation to each video based on their popularity profiles. Simulation results manifest that the SBSs with caching ability can greatly improve the average quality of SVC streaming, and that our proposed caching strategy acquires significant performance gain compared with other conventional caching policies.