论cnn与偏微分方程的关系

M. Gilli, T. Roska, L. Chua, P. Civalleri
{"title":"论cnn与偏微分方程的关系","authors":"M. Gilli, T. Roska, L. Chua, P. Civalleri","doi":"10.1109/CNNA.2002.1035030","DOIUrl":null,"url":null,"abstract":"The relationship between cellular neural/nonlinear networks (CNNs) and partial differential equations (PDEs) is investigated. The equivalence between a discrete-space CNN model and a continuous-space PDE model is rigorously defined. The problem of the equivalence is split into two sub-problems: approximation and topological equivalence, that can be explicitly studied for any CNN models. It is known that each PDE can be approximated by a space difference scheme, i.e. a CNN model, that presents a similar dynamic behavior. It is shown, through examples, that there exist CNN models that are not equivalent to any PDEs, either because they do not approximate any PDE models, or because they have a different dynamic behavior (i.e. they are not topologically equivalent to the PDE, that approximate). This proves that the spatio-temporal CNN dynamics is broader than that described by PDEs.","PeriodicalId":387716,"journal":{"name":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the relationship between CNNs and PDEs\",\"authors\":\"M. Gilli, T. Roska, L. Chua, P. Civalleri\",\"doi\":\"10.1109/CNNA.2002.1035030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between cellular neural/nonlinear networks (CNNs) and partial differential equations (PDEs) is investigated. The equivalence between a discrete-space CNN model and a continuous-space PDE model is rigorously defined. The problem of the equivalence is split into two sub-problems: approximation and topological equivalence, that can be explicitly studied for any CNN models. It is known that each PDE can be approximated by a space difference scheme, i.e. a CNN model, that presents a similar dynamic behavior. It is shown, through examples, that there exist CNN models that are not equivalent to any PDEs, either because they do not approximate any PDE models, or because they have a different dynamic behavior (i.e. they are not topologically equivalent to the PDE, that approximate). This proves that the spatio-temporal CNN dynamics is broader than that described by PDEs.\",\"PeriodicalId\":387716,\"journal\":{\"name\":\"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2002.1035030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2002.1035030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究了细胞神经/非线性网络(cnn)与偏微分方程(PDEs)之间的关系。严格定义了离散空间CNN模型与连续空间PDE模型的等价性。等价问题分为两个子问题:逼近和拓扑等价,这两个子问题可以对任何CNN模型进行显式研究。我们知道,每个PDE都可以用一个空间差分格式来近似,即一个具有相似动态行为的CNN模型。通过实例表明,存在不等同于任何PDE的CNN模型,要么是因为它们不近似任何PDE模型,要么是因为它们具有不同的动态行为(即它们与近似的PDE在拓扑上不等效)。这证明了CNN的时空动态比偏微分方程描述的更广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the relationship between CNNs and PDEs
The relationship between cellular neural/nonlinear networks (CNNs) and partial differential equations (PDEs) is investigated. The equivalence between a discrete-space CNN model and a continuous-space PDE model is rigorously defined. The problem of the equivalence is split into two sub-problems: approximation and topological equivalence, that can be explicitly studied for any CNN models. It is known that each PDE can be approximated by a space difference scheme, i.e. a CNN model, that presents a similar dynamic behavior. It is shown, through examples, that there exist CNN models that are not equivalent to any PDEs, either because they do not approximate any PDE models, or because they have a different dynamic behavior (i.e. they are not topologically equivalent to the PDE, that approximate). This proves that the spatio-temporal CNN dynamics is broader than that described by PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信