神经进化工具在技术控制系统自动化中的应用

A. Doroshenko, I. Achour, Ntuu Kpi
{"title":"神经进化工具在技术控制系统自动化中的应用","authors":"A. Doroshenko, I. Achour, Ntuu Kpi","doi":"10.15407/pp2021.01.016","DOIUrl":null,"url":null,"abstract":"Reinforced learning is a field of machine learning based on how software agents should perform actions in the environment to maximize the concept of cumulative reward. This paper proposes a new application of machine reinforcement learning techniques in the form of neuro-evolution of augmenting topologies to solve control automation problems using modeling control problems of technical systems. Key application components include OpenAI Gym toolkit for develop-ing and comparing reinforcement learn-ing algorithms, full-fledged open-source implementation of the NEAT genetic al-gorithm called SharpNEAT, and inter-mediate software for orchestration of these components. The algorithm of neu-roevolution of augmenting topologies demonstrates the finding of efficient neural networks on the example of a simple standard problem with continu-ous control from OpenAI Gym.","PeriodicalId":313885,"journal":{"name":"PROBLEMS IN PROGRAMMING","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of neuro evolution tools in automation of technical control systems\",\"authors\":\"A. Doroshenko, I. Achour, Ntuu Kpi\",\"doi\":\"10.15407/pp2021.01.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced learning is a field of machine learning based on how software agents should perform actions in the environment to maximize the concept of cumulative reward. This paper proposes a new application of machine reinforcement learning techniques in the form of neuro-evolution of augmenting topologies to solve control automation problems using modeling control problems of technical systems. Key application components include OpenAI Gym toolkit for develop-ing and comparing reinforcement learn-ing algorithms, full-fledged open-source implementation of the NEAT genetic al-gorithm called SharpNEAT, and inter-mediate software for orchestration of these components. The algorithm of neu-roevolution of augmenting topologies demonstrates the finding of efficient neural networks on the example of a simple standard problem with continu-ous control from OpenAI Gym.\",\"PeriodicalId\":313885,\"journal\":{\"name\":\"PROBLEMS IN PROGRAMMING\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROBLEMS IN PROGRAMMING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pp2021.01.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROBLEMS IN PROGRAMMING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pp2021.01.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强化学习是机器学习的一个领域,基于软件代理如何在环境中执行动作以最大化累积奖励的概念。本文提出了一种新的机器强化学习技术的应用,以增强拓扑的神经进化的形式,通过对技术系统的控制问题建模来解决控制自动化问题。关键的应用组件包括用于开发和比较强化学习算法的OpenAI Gym工具包,称为SharpNEAT的完整开源的NEAT遗传算法实现,以及用于编排这些组件的中间软件。以OpenAI Gym的一个简单的连续控制标准问题为例,用增强拓扑的新进化算法证明了高效神经网络的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of neuro evolution tools in automation of technical control systems
Reinforced learning is a field of machine learning based on how software agents should perform actions in the environment to maximize the concept of cumulative reward. This paper proposes a new application of machine reinforcement learning techniques in the form of neuro-evolution of augmenting topologies to solve control automation problems using modeling control problems of technical systems. Key application components include OpenAI Gym toolkit for develop-ing and comparing reinforcement learn-ing algorithms, full-fledged open-source implementation of the NEAT genetic al-gorithm called SharpNEAT, and inter-mediate software for orchestration of these components. The algorithm of neu-roevolution of augmenting topologies demonstrates the finding of efficient neural networks on the example of a simple standard problem with continu-ous control from OpenAI Gym.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信