使用计算机视觉和深度学习进行细胞识别

V. Y. Kudinov, M. Y. Mashukov, E. A. Maslova, K. Orishchenko, A. Okunev, A. V. Matveev
{"title":"使用计算机视觉和深度学习进行细胞识别","authors":"V. Y. Kudinov, M. Y. Mashukov, E. A. Maslova, K. Orishchenko, A. Okunev, A. V. Matveev","doi":"10.1109/S.A.I.ence50533.2020.9303201","DOIUrl":null,"url":null,"abstract":"The task of the objects identification, counting, and measurement is a huge part of scientific investigations and technological applications. Automated methods using traditional processing such as segmentation, edge detection, and so on represented by available software (e.g. CellProfiler) are not flexible, can be used only with images of high-quality, and in addition require setting a part of parameters by hand. This contribution presents the applying the deep learning method for recognition of HeLa cells expressing green fluorescent protein (EGFP) automatically. We used Cascade Mask R-CNN neural networks which has a ResNeXt backbone and deformable convolutional networks layers. Training dataset contained seven pictures with 5754 labeled cells. Three images with 2469 labeled cells were used as test-dataset. The trained neural network showed mAP=0.4.","PeriodicalId":201402,"journal":{"name":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Computer Vision and Deep Learning for Cells Recognition\",\"authors\":\"V. Y. Kudinov, M. Y. Mashukov, E. A. Maslova, K. Orishchenko, A. Okunev, A. V. Matveev\",\"doi\":\"10.1109/S.A.I.ence50533.2020.9303201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of the objects identification, counting, and measurement is a huge part of scientific investigations and technological applications. Automated methods using traditional processing such as segmentation, edge detection, and so on represented by available software (e.g. CellProfiler) are not flexible, can be used only with images of high-quality, and in addition require setting a part of parameters by hand. This contribution presents the applying the deep learning method for recognition of HeLa cells expressing green fluorescent protein (EGFP) automatically. We used Cascade Mask R-CNN neural networks which has a ResNeXt backbone and deformable convolutional networks layers. Training dataset contained seven pictures with 5754 labeled cells. Three images with 2469 labeled cells were used as test-dataset. The trained neural network showed mAP=0.4.\",\"PeriodicalId\":201402,\"journal\":{\"name\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S.A.I.ence50533.2020.9303201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S.A.I.ence50533.2020.9303201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物体的识别、计数和测量是科学研究和技术应用的重要组成部分。使用传统处理方法的自动化方法,如分割、边缘检测等,由可用的软件(如CellProfiler)代表,不灵活,只能用于高质量的图像,另外需要手动设置部分参数。本文提出了应用深度学习方法自动识别表达绿色荧光蛋白(EGFP)的HeLa细胞。我们使用具有ResNeXt主干和可变形卷积网络层的Cascade Mask R-CNN神经网络。训练数据集包含7张图片,5754个标记单元格。使用三张带有2469个标记细胞的图像作为测试数据集。训练后的神经网络mAP=0.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Computer Vision and Deep Learning for Cells Recognition
The task of the objects identification, counting, and measurement is a huge part of scientific investigations and technological applications. Automated methods using traditional processing such as segmentation, edge detection, and so on represented by available software (e.g. CellProfiler) are not flexible, can be used only with images of high-quality, and in addition require setting a part of parameters by hand. This contribution presents the applying the deep learning method for recognition of HeLa cells expressing green fluorescent protein (EGFP) automatically. We used Cascade Mask R-CNN neural networks which has a ResNeXt backbone and deformable convolutional networks layers. Training dataset contained seven pictures with 5754 labeled cells. Three images with 2469 labeled cells were used as test-dataset. The trained neural network showed mAP=0.4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信