突变检测:一种时频方法

H. Laurent, C. Doncarli, P. Poignet
{"title":"突变检测:一种时频方法","authors":"H. Laurent, C. Doncarli, P. Poignet","doi":"10.5281/ZENODO.35977","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison between parametric and non-parametric approaches of abrupt changes detection in noisy signals. The goal is to propose an alternative way to be used when the model-based methods do not work very well because of an unsuitable model structure or a non strictly stationnary stepwise signal. In this latter case, an analysis of time-frequency distributions allows the detection of abrupt spectral changes without any hypothesis and provides some results as good as parametric methods for the studied type of signals.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of abrupt changes: A time-frequency approach\",\"authors\":\"H. Laurent, C. Doncarli, P. Poignet\",\"doi\":\"10.5281/ZENODO.35977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparison between parametric and non-parametric approaches of abrupt changes detection in noisy signals. The goal is to propose an alternative way to be used when the model-based methods do not work very well because of an unsuitable model structure or a non strictly stationnary stepwise signal. In this latter case, an analysis of time-frequency distributions allows the detection of abrupt spectral changes without any hypothesis and provides some results as good as parametric methods for the studied type of signals.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.35977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.35977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对噪声信号突变检测的参数方法和非参数方法进行了比较。目标是当基于模型的方法由于模型结构不合适或非严格平稳逐步信号而不能很好地工作时,提出一种替代方法。在后一种情况下,对时频分布的分析可以在没有任何假设的情况下检测到突然的频谱变化,并且对所研究的信号类型提供一些与参数方法一样好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of abrupt changes: A time-frequency approach
This paper presents a comparison between parametric and non-parametric approaches of abrupt changes detection in noisy signals. The goal is to propose an alternative way to be used when the model-based methods do not work very well because of an unsuitable model structure or a non strictly stationnary stepwise signal. In this latter case, an analysis of time-frequency distributions allows the detection of abrupt spectral changes without any hypothesis and provides some results as good as parametric methods for the studied type of signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信