基于负载流的嵌入式软执行机构设计

Sreekalyan Patiballa, Sreeshankar Satheeshbabu, Girish Krishnan
{"title":"基于负载流的嵌入式软执行机构设计","authors":"Sreekalyan Patiballa, Sreeshankar Satheeshbabu, Girish Krishnan","doi":"10.1115/detc2019-98514","DOIUrl":null,"url":null,"abstract":"\n Transmission members such as gears and linkages are ubiquitously used in mechatronic systems to tailor the performance of actuators. However, in most bio-inspired soft systems the actuation and transmission members are closely integrated, and sometimes indistinguishable. Embedded actuation is greatly advantageous for attaining high stroke and transferring large output forces. This paper attempts at a systematic synthesis of compliant systems with embedded contractile actuators and passive members to achieve a particular kinematic objective. The paper builds on recent understanding of a compliant mechanism topology where the constituent members can be functionally classified as load transferring transmitters and strain energy storing constraints. The functional equivalence between the transmitter members and actuators are used to replace transmitters in tension with contractile actuators, thus realizing a compliant embedded system. Once a single-input single-output compliant mechanism is designed, and its load flow behavior mapped, systematic guidelines and best practices are established for embedding actuators within the topology to increase performance without altering the kinematic behavior. Several examples, including a prototype that used soft pneumatic artificial muscles is presented to validate the synthesis framework. The initial results will form the basis for designing fully autonomous compliant systems with embedded actuators and sensors without the use of computationally expensive techniques.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load-Flow Based Design of Compliant Mechanisms With Embedded Soft Actuators\",\"authors\":\"Sreekalyan Patiballa, Sreeshankar Satheeshbabu, Girish Krishnan\",\"doi\":\"10.1115/detc2019-98514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Transmission members such as gears and linkages are ubiquitously used in mechatronic systems to tailor the performance of actuators. However, in most bio-inspired soft systems the actuation and transmission members are closely integrated, and sometimes indistinguishable. Embedded actuation is greatly advantageous for attaining high stroke and transferring large output forces. This paper attempts at a systematic synthesis of compliant systems with embedded contractile actuators and passive members to achieve a particular kinematic objective. The paper builds on recent understanding of a compliant mechanism topology where the constituent members can be functionally classified as load transferring transmitters and strain energy storing constraints. The functional equivalence between the transmitter members and actuators are used to replace transmitters in tension with contractile actuators, thus realizing a compliant embedded system. Once a single-input single-output compliant mechanism is designed, and its load flow behavior mapped, systematic guidelines and best practices are established for embedding actuators within the topology to increase performance without altering the kinematic behavior. Several examples, including a prototype that used soft pneumatic artificial muscles is presented to validate the synthesis framework. The initial results will form the basis for designing fully autonomous compliant systems with embedded actuators and sensors without the use of computationally expensive techniques.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传动元件如齿轮和连杆在机电系统中广泛使用,以调整执行器的性能。然而,在大多数仿生软系统中,驱动元件和传动元件是紧密结合的,有时难以区分。嵌入式驱动对实现高冲程和传递大输出力非常有利。本文试图在一个系统的综合柔性系统嵌入收缩驱动器和被动成员,以实现一个特定的运动学目标。本文建立在最近对柔性机构拓扑结构的理解之上,其中组成成员可以在功能上分类为负载传递变送器和应变能量存储约束。利用变送器构件与执行机构之间的功能等价,用收缩执行机构代替处于张力状态的变送器,从而实现嵌入式系统的柔性。一旦设计了单输入单输出柔性机构,并映射了其负载流行为,就可以建立在拓扑结构中嵌入执行器的系统指南和最佳实践,从而在不改变运动学行为的情况下提高性能。给出了几个例子,包括一个使用软气动人造肌肉的原型,以验证综合框架。初步结果将成为设计完全自主的兼容系统的基础,该系统具有嵌入式执行器和传感器,而无需使用昂贵的计算技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load-Flow Based Design of Compliant Mechanisms With Embedded Soft Actuators
Transmission members such as gears and linkages are ubiquitously used in mechatronic systems to tailor the performance of actuators. However, in most bio-inspired soft systems the actuation and transmission members are closely integrated, and sometimes indistinguishable. Embedded actuation is greatly advantageous for attaining high stroke and transferring large output forces. This paper attempts at a systematic synthesis of compliant systems with embedded contractile actuators and passive members to achieve a particular kinematic objective. The paper builds on recent understanding of a compliant mechanism topology where the constituent members can be functionally classified as load transferring transmitters and strain energy storing constraints. The functional equivalence between the transmitter members and actuators are used to replace transmitters in tension with contractile actuators, thus realizing a compliant embedded system. Once a single-input single-output compliant mechanism is designed, and its load flow behavior mapped, systematic guidelines and best practices are established for embedding actuators within the topology to increase performance without altering the kinematic behavior. Several examples, including a prototype that used soft pneumatic artificial muscles is presented to validate the synthesis framework. The initial results will form the basis for designing fully autonomous compliant systems with embedded actuators and sensors without the use of computationally expensive techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信