低速加速下高速分组交换机的延迟性能

P. Giaccone, Emilio Leonardi, B. Prabhakar, D. Shah
{"title":"低速加速下高速分组交换机的延迟性能","authors":"P. Giaccone, Emilio Leonardi, B. Prabhakar, D. Shah","doi":"10.1109/GLOCOM.2002.1189106","DOIUrl":null,"url":null,"abstract":"The speedup of a switch is the factor by which the switch, and hence the memory used in the switch, runs faster compared to the line rate. In high-speed switches, line rates are already touching the limits at which memory can operate. It is very important for a switch to run at as low a speedup as possible. For an input queued (IQ) switch at speedup 1, 100% throughput can be achieved for any admissible traffic (McKeown, N. et al., 1999; Dai, J. and Prabhakar, B., 2000). This gives finite average delays but does not guarantee control on packet delays. S.T. Chuang et al. (see IEEE J. Selected Areas of Commun., vol.17, no.6, p.1030-9, 1999) show that a combined input output queued (CIOQ) switch can emulate perfectly an output queued (OQ) switch at a speedup of 2 and, thus, control the packet delays. This motivates a study of the possibility of obtaining delay control at speedup less than 2. To guarantee optimal control of delays for a general class of traffic, as shown by Chuang et al., speedup 2 is necessary. Hence, to obtain control of delays at lower speedup, we need to restrict the class of arrival traffic. We study the speedup requirement for a class of admissible traffic, which we denote as (1, nF)-regulated traffic, with parameters n and F. We obtain the necessary speedup for this class of traffic. Further, we present a general class of algorithms working at the necessary speedups and thus providing bounded delays.","PeriodicalId":415837,"journal":{"name":"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Delay performance of high-speed packet switches with low speedup\",\"authors\":\"P. Giaccone, Emilio Leonardi, B. Prabhakar, D. Shah\",\"doi\":\"10.1109/GLOCOM.2002.1189106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The speedup of a switch is the factor by which the switch, and hence the memory used in the switch, runs faster compared to the line rate. In high-speed switches, line rates are already touching the limits at which memory can operate. It is very important for a switch to run at as low a speedup as possible. For an input queued (IQ) switch at speedup 1, 100% throughput can be achieved for any admissible traffic (McKeown, N. et al., 1999; Dai, J. and Prabhakar, B., 2000). This gives finite average delays but does not guarantee control on packet delays. S.T. Chuang et al. (see IEEE J. Selected Areas of Commun., vol.17, no.6, p.1030-9, 1999) show that a combined input output queued (CIOQ) switch can emulate perfectly an output queued (OQ) switch at a speedup of 2 and, thus, control the packet delays. This motivates a study of the possibility of obtaining delay control at speedup less than 2. To guarantee optimal control of delays for a general class of traffic, as shown by Chuang et al., speedup 2 is necessary. Hence, to obtain control of delays at lower speedup, we need to restrict the class of arrival traffic. We study the speedup requirement for a class of admissible traffic, which we denote as (1, nF)-regulated traffic, with parameters n and F. We obtain the necessary speedup for this class of traffic. Further, we present a general class of algorithms working at the necessary speedups and thus providing bounded delays.\",\"PeriodicalId\":415837,\"journal\":{\"name\":\"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2002.1189106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2002.1189106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

交换机的加速是指与线路速率相比,交换机和交换机中使用的内存运行得更快的因素。在高速交换机中,线路速率已经接近内存运行的极限。对于开关来说,在尽可能低的加速下运行是非常重要的。对于加速为1的输入队列(IQ)交换机,对于任何允许的流量都可以实现100%的吞吐量(McKeown, N. et al., 1999;Dai, J. and Prabhakar, B., 2000)。这给出了有限的平均延迟,但不能保证对数据包延迟的控制。S.T. Chuang等人(参见IEEE J.选定的公共领域。)第17卷,没有。6, p.1030- 9,1999)表明,一个组合的输入输出排队(CIOQ)开关可以完美地模拟输出排队(OQ)开关在2的加速,从而控制数据包延迟。这激发了对在小于2的加速下获得延迟控制的可能性的研究。如Chuang等人所示,为了保证对一类一般交通的延迟进行最优控制,需要加速2。因此,为了在较低加速下控制延迟,我们需要限制到达交通的类别。本文研究了一类允许流量的加速要求,我们将其表示为(1,nF)调节流量,参数为n和f。我们得到了这类流量的必要加速。此外,我们提出了一类在必要的加速下工作的通用算法,从而提供了有界延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delay performance of high-speed packet switches with low speedup
The speedup of a switch is the factor by which the switch, and hence the memory used in the switch, runs faster compared to the line rate. In high-speed switches, line rates are already touching the limits at which memory can operate. It is very important for a switch to run at as low a speedup as possible. For an input queued (IQ) switch at speedup 1, 100% throughput can be achieved for any admissible traffic (McKeown, N. et al., 1999; Dai, J. and Prabhakar, B., 2000). This gives finite average delays but does not guarantee control on packet delays. S.T. Chuang et al. (see IEEE J. Selected Areas of Commun., vol.17, no.6, p.1030-9, 1999) show that a combined input output queued (CIOQ) switch can emulate perfectly an output queued (OQ) switch at a speedup of 2 and, thus, control the packet delays. This motivates a study of the possibility of obtaining delay control at speedup less than 2. To guarantee optimal control of delays for a general class of traffic, as shown by Chuang et al., speedup 2 is necessary. Hence, to obtain control of delays at lower speedup, we need to restrict the class of arrival traffic. We study the speedup requirement for a class of admissible traffic, which we denote as (1, nF)-regulated traffic, with parameters n and F. We obtain the necessary speedup for this class of traffic. Further, we present a general class of algorithms working at the necessary speedups and thus providing bounded delays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信