高密度寡核苷酸阵列的并行预处理算法

M. Schmidberger, U. Mansmann
{"title":"高密度寡核苷酸阵列的并行预处理算法","authors":"M. Schmidberger, U. Mansmann","doi":"10.1109/IPDPS.2008.4536175","DOIUrl":null,"url":null,"abstract":"Studies of gene expression using high-density oligonucleotide microarrays have become standard in a variety of biological contexts. The data recorded using the microarray technique are characterized by high levels of noise and bias. These failures have to be removed, therefore preprocessing of raw data has been a research topic of high priority over the past few years. Actual research and computations are limited by the available computer hardware. Furthermore most of the existing preprocessing methods are very time consuming. To solve these problems, the potential of parallel computing should be used. For parallelization on multicomputers, the communication protocol MPI (message passing interface) and the R language will be used. This paper proposes the new R language package affyPara for parallelized preprocessing of high-density oligonucleotide microarray data. Partition of data could be done on arrays and therefore parallelization of algorithms gets intuitive possible. The partition of data and distribution to several nodes solves the main memory problems and accelerates the methods by up to the factor ten.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Parallelized preprocessing algorithms for high-density oligonucleotide arrays\",\"authors\":\"M. Schmidberger, U. Mansmann\",\"doi\":\"10.1109/IPDPS.2008.4536175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies of gene expression using high-density oligonucleotide microarrays have become standard in a variety of biological contexts. The data recorded using the microarray technique are characterized by high levels of noise and bias. These failures have to be removed, therefore preprocessing of raw data has been a research topic of high priority over the past few years. Actual research and computations are limited by the available computer hardware. Furthermore most of the existing preprocessing methods are very time consuming. To solve these problems, the potential of parallel computing should be used. For parallelization on multicomputers, the communication protocol MPI (message passing interface) and the R language will be used. This paper proposes the new R language package affyPara for parallelized preprocessing of high-density oligonucleotide microarray data. Partition of data could be done on arrays and therefore parallelization of algorithms gets intuitive possible. The partition of data and distribution to several nodes solves the main memory problems and accelerates the methods by up to the factor ten.\",\"PeriodicalId\":162608,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2008.4536175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

使用高密度寡核苷酸微阵列研究基因表达已成为各种生物学背景下的标准。使用微阵列技术记录的数据的特点是高水平的噪声和偏差。这些故障必须被消除,因此原始数据的预处理在过去几年中一直是一个高度优先的研究课题。实际的研究和计算受到可用的计算机硬件的限制。此外,现有的大多数预处理方法都非常耗时。为了解决这些问题,应该利用并行计算的潜力。对于多台计算机上的并行化,将使用通信协议MPI(消息传递接口)和R语言。本文提出了一种新的R语言包affyPara,用于高密度寡核苷酸微阵列数据的并行预处理。数据的分区可以在数组上完成,因此算法的并行化变得直观。数据分区和分布到多个节点解决了主要的内存问题,并将方法的速度提高了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelized preprocessing algorithms for high-density oligonucleotide arrays
Studies of gene expression using high-density oligonucleotide microarrays have become standard in a variety of biological contexts. The data recorded using the microarray technique are characterized by high levels of noise and bias. These failures have to be removed, therefore preprocessing of raw data has been a research topic of high priority over the past few years. Actual research and computations are limited by the available computer hardware. Furthermore most of the existing preprocessing methods are very time consuming. To solve these problems, the potential of parallel computing should be used. For parallelization on multicomputers, the communication protocol MPI (message passing interface) and the R language will be used. This paper proposes the new R language package affyPara for parallelized preprocessing of high-density oligonucleotide microarray data. Partition of data could be done on arrays and therefore parallelization of algorithms gets intuitive possible. The partition of data and distribution to several nodes solves the main memory problems and accelerates the methods by up to the factor ten.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信