Mateusz Berezecki, E. Frachtenberg, Mike Paleczny, K. Steele
{"title":"多核键值存储","authors":"Mateusz Berezecki, E. Frachtenberg, Mike Paleczny, K. Steele","doi":"10.1109/IGCC.2011.6008565","DOIUrl":null,"url":null,"abstract":"Scaling data centers to handle task-parallel work-loads requires balancing the cost of hardware, operations, and power. Low-power, low-core-count servers reduce costs in one of these dimensions, but may require additional nodes to provide the required quality of service or increase costs by under-utilizing memory and other resources. We show that the throughput, response time, and power consumption of a high-core-count processor operating at a low clock rate and very low power consumption can perform well when compared to a platform using faster but fewer commodity cores. Specific measurements are made for a key-value store, Memcached, using a variety of systems based on three different processors: the 4-core Intel Xeon L5520, 8-core AMD Opteron 6128 HE, and 64-core Tilera TILEPro64.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"Many-core key-value store\",\"authors\":\"Mateusz Berezecki, E. Frachtenberg, Mike Paleczny, K. Steele\",\"doi\":\"10.1109/IGCC.2011.6008565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scaling data centers to handle task-parallel work-loads requires balancing the cost of hardware, operations, and power. Low-power, low-core-count servers reduce costs in one of these dimensions, but may require additional nodes to provide the required quality of service or increase costs by under-utilizing memory and other resources. We show that the throughput, response time, and power consumption of a high-core-count processor operating at a low clock rate and very low power consumption can perform well when compared to a platform using faster but fewer commodity cores. Specific measurements are made for a key-value store, Memcached, using a variety of systems based on three different processors: the 4-core Intel Xeon L5520, 8-core AMD Opteron 6128 HE, and 64-core Tilera TILEPro64.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaling data centers to handle task-parallel work-loads requires balancing the cost of hardware, operations, and power. Low-power, low-core-count servers reduce costs in one of these dimensions, but may require additional nodes to provide the required quality of service or increase costs by under-utilizing memory and other resources. We show that the throughput, response time, and power consumption of a high-core-count processor operating at a low clock rate and very low power consumption can perform well when compared to a platform using faster but fewer commodity cores. Specific measurements are made for a key-value store, Memcached, using a variety of systems based on three different processors: the 4-core Intel Xeon L5520, 8-core AMD Opteron 6128 HE, and 64-core Tilera TILEPro64.