Haodong Ma, Yuanan Zhao, Yuchen Shao, C. Li, Jian Sun, J. Shao
{"title":"低重复率下飞秒激光对高反射涂层损伤的疲劳效应","authors":"Haodong Ma, Yuanan Zhao, Yuchen Shao, C. Li, Jian Sun, J. Shao","doi":"10.1117/12.2539749","DOIUrl":null,"url":null,"abstract":"This work is dedicated to the study of fatigue effects upon femtosecond laser-induced damage of Ta2O5/HfO2/SiO2 highreflective coatings irradiated by pulse train at 1Hz (65 fs, 800 nm). Upon on comparative measurements of different pulse numbers involving between 10 and 300 pulses, laser-induced damage threshold (LIDT) decreases and the multipulse LIDT decreased to the level of 70~75% of the single pulse LIDT. In addition, we found that the probability of damage performs an increasing trend with the number of pulse increases when the coating is irradiated with the same fluence. The evolution of LIDT and 100% damage probability threshold under multipulse irradiations revealed that fatigue effects were affected by both laser fluence and shot numbers. The deep defects play an important role in the multi-shot mode. A correlative theory model based on critical conduction band electron density is constructed to elucidate the experimental phenomena.","PeriodicalId":197837,"journal":{"name":"SPIE/SIOM Pacific Rim Laser Damage","volume":"11063 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fatigue effect of femtosecond laser-induced damage in high-reflective coatings at low repetition rate\",\"authors\":\"Haodong Ma, Yuanan Zhao, Yuchen Shao, C. Li, Jian Sun, J. Shao\",\"doi\":\"10.1117/12.2539749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is dedicated to the study of fatigue effects upon femtosecond laser-induced damage of Ta2O5/HfO2/SiO2 highreflective coatings irradiated by pulse train at 1Hz (65 fs, 800 nm). Upon on comparative measurements of different pulse numbers involving between 10 and 300 pulses, laser-induced damage threshold (LIDT) decreases and the multipulse LIDT decreased to the level of 70~75% of the single pulse LIDT. In addition, we found that the probability of damage performs an increasing trend with the number of pulse increases when the coating is irradiated with the same fluence. The evolution of LIDT and 100% damage probability threshold under multipulse irradiations revealed that fatigue effects were affected by both laser fluence and shot numbers. The deep defects play an important role in the multi-shot mode. A correlative theory model based on critical conduction band electron density is constructed to elucidate the experimental phenomena.\",\"PeriodicalId\":197837,\"journal\":{\"name\":\"SPIE/SIOM Pacific Rim Laser Damage\",\"volume\":\"11063 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/SIOM Pacific Rim Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2539749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/SIOM Pacific Rim Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2539749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The fatigue effect of femtosecond laser-induced damage in high-reflective coatings at low repetition rate
This work is dedicated to the study of fatigue effects upon femtosecond laser-induced damage of Ta2O5/HfO2/SiO2 highreflective coatings irradiated by pulse train at 1Hz (65 fs, 800 nm). Upon on comparative measurements of different pulse numbers involving between 10 and 300 pulses, laser-induced damage threshold (LIDT) decreases and the multipulse LIDT decreased to the level of 70~75% of the single pulse LIDT. In addition, we found that the probability of damage performs an increasing trend with the number of pulse increases when the coating is irradiated with the same fluence. The evolution of LIDT and 100% damage probability threshold under multipulse irradiations revealed that fatigue effects were affected by both laser fluence and shot numbers. The deep defects play an important role in the multi-shot mode. A correlative theory model based on critical conduction band electron density is constructed to elucidate the experimental phenomena.