{"title":"印度Sironcha区Godavari河上rcc桥的独特设计","authors":"Ram Vighe","doi":"10.21013/JTE.ICSESD201715","DOIUrl":null,"url":null,"abstract":"Reinforced concrete bridges may have various systems: Beam (with simply supported or continuous beams), Frame, Arch, or combined of it.. Beam reinforced concrete bridges are the most common type, Spans with plate structure are generally used to cover gaps of 6–18 m. Ribbed spans with main beams supporting the plate of .The bridge floor are used to cover gaps of more than 12m. For gaps of more than 40 m, beam spans frequently have box shaped cross sections. Arch systems are most appropriate for bridges on stable soil. The spans of beam-type reinforced concrete bridges are up to 200 m; those of archer in forced concrete bridges, up to 300 m. The main advantages of reinforced concrete bridges are durability and relatively low maintenance cost. Precast reinforced-concrete bridges, using finished plant-Manufactured components, are the type primarily built in the USSR. Methods of suspension assembly of spans and delivery of precast components to local areas by ships are extremely efficient in the construction of large reinforced-concrete bridges.","PeriodicalId":269688,"journal":{"name":"IRA-International Journal of Technology & Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unique Design of R.C.C. Bridge on Godavari River at Sironcha Dist. Gadchiroli -India\",\"authors\":\"Ram Vighe\",\"doi\":\"10.21013/JTE.ICSESD201715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced concrete bridges may have various systems: Beam (with simply supported or continuous beams), Frame, Arch, or combined of it.. Beam reinforced concrete bridges are the most common type, Spans with plate structure are generally used to cover gaps of 6–18 m. Ribbed spans with main beams supporting the plate of .The bridge floor are used to cover gaps of more than 12m. For gaps of more than 40 m, beam spans frequently have box shaped cross sections. Arch systems are most appropriate for bridges on stable soil. The spans of beam-type reinforced concrete bridges are up to 200 m; those of archer in forced concrete bridges, up to 300 m. The main advantages of reinforced concrete bridges are durability and relatively low maintenance cost. Precast reinforced-concrete bridges, using finished plant-Manufactured components, are the type primarily built in the USSR. Methods of suspension assembly of spans and delivery of precast components to local areas by ships are extremely efficient in the construction of large reinforced-concrete bridges.\",\"PeriodicalId\":269688,\"journal\":{\"name\":\"IRA-International Journal of Technology & Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRA-International Journal of Technology & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21013/JTE.ICSESD201715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRA-International Journal of Technology & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21013/JTE.ICSESD201715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Unique Design of R.C.C. Bridge on Godavari River at Sironcha Dist. Gadchiroli -India
Reinforced concrete bridges may have various systems: Beam (with simply supported or continuous beams), Frame, Arch, or combined of it.. Beam reinforced concrete bridges are the most common type, Spans with plate structure are generally used to cover gaps of 6–18 m. Ribbed spans with main beams supporting the plate of .The bridge floor are used to cover gaps of more than 12m. For gaps of more than 40 m, beam spans frequently have box shaped cross sections. Arch systems are most appropriate for bridges on stable soil. The spans of beam-type reinforced concrete bridges are up to 200 m; those of archer in forced concrete bridges, up to 300 m. The main advantages of reinforced concrete bridges are durability and relatively low maintenance cost. Precast reinforced-concrete bridges, using finished plant-Manufactured components, are the type primarily built in the USSR. Methods of suspension assembly of spans and delivery of precast components to local areas by ships are extremely efficient in the construction of large reinforced-concrete bridges.