天文学中机器学习的人为因素

John E. Wenskovitch, A. Jaodand
{"title":"天文学中机器学习的人为因素","authors":"John E. Wenskovitch, A. Jaodand","doi":"10.54941/ahfe1003580","DOIUrl":null,"url":null,"abstract":"In this work, we present a collection of human-centered pitfalls that can occur when using machine learning tools and techniques in modern astronomical research, and we recommend best practices in order to mitigate these pitfalls. Human concerns affect the adoption and evolution of machine learning (ML) techniques in both existing workflows and work cultures. We use current and future surveys such as ZTF and LSST, the data that they collect, and the techniques implemented to process that data as examples of these challenges and the potential application of these best practices, with the ultimate goal of maximizing the discovery potential of these surveys.","PeriodicalId":102446,"journal":{"name":"Human Factors and Simulation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Factors for Machine Learning in Astronomy\",\"authors\":\"John E. Wenskovitch, A. Jaodand\",\"doi\":\"10.54941/ahfe1003580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a collection of human-centered pitfalls that can occur when using machine learning tools and techniques in modern astronomical research, and we recommend best practices in order to mitigate these pitfalls. Human concerns affect the adoption and evolution of machine learning (ML) techniques in both existing workflows and work cultures. We use current and future surveys such as ZTF and LSST, the data that they collect, and the techniques implemented to process that data as examples of these challenges and the potential application of these best practices, with the ultimate goal of maximizing the discovery potential of these surveys.\",\"PeriodicalId\":102446,\"journal\":{\"name\":\"Human Factors and Simulation\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1003580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1003580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了在现代天文学研究中使用机器学习工具和技术时可能出现的以人为中心的陷阱的集合,并推荐了减轻这些陷阱的最佳实践。在现有的工作流程和工作文化中,人类的关注点会影响机器学习(ML)技术的采用和发展。我们使用ZTF和LSST等当前和未来的调查,以及他们收集的数据和处理数据的技术作为这些挑战和这些最佳实践的潜在应用的例子,最终目标是最大限度地提高这些调查的发现潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Factors for Machine Learning in Astronomy
In this work, we present a collection of human-centered pitfalls that can occur when using machine learning tools and techniques in modern astronomical research, and we recommend best practices in order to mitigate these pitfalls. Human concerns affect the adoption and evolution of machine learning (ML) techniques in both existing workflows and work cultures. We use current and future surveys such as ZTF and LSST, the data that they collect, and the techniques implemented to process that data as examples of these challenges and the potential application of these best practices, with the ultimate goal of maximizing the discovery potential of these surveys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信