B. Bayraktaroglu, R. Fitch, J. Barrette, R. Scherer, L. Kehias, C.I. Huang
{"title":"热稳定AlGaAs/GaAs微波功率HBTs的设计与制造","authors":"B. Bayraktaroglu, R. Fitch, J. Barrette, R. Scherer, L. Kehias, C.I. Huang","doi":"10.1109/CORNEL.1993.303072","DOIUrl":null,"url":null,"abstract":"Record power density performance of AlGaAs/GaAs microwave power heterojunction bipolar transistors (HBTs) was accomplished through the use of novel design and fabrication techniques. Thermally-stable operation of HBTs up to their electronic limitation (10 mWspl mu/m/sup 2/ output power density at 10 GHz with 0.6 W CW output power, 7.1 dB gain and 60% PAE) was attained. The design of the HBT was based on a detailed electro-thermal device analysis which revealed the necessity to provide an effective heat transfer path between heat sources in a multi-emitter power device. Excess heat was transferred out of the device using thermal shunt and thermal lens techniques. The thermal resistance of the device was lowered by a factor of 2.5-3 compared to conventional devices.<<ETX>>","PeriodicalId":129440,"journal":{"name":"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Design and fabrication of thermally-stable AlGaAs/GaAs microwave power HBTs\",\"authors\":\"B. Bayraktaroglu, R. Fitch, J. Barrette, R. Scherer, L. Kehias, C.I. Huang\",\"doi\":\"10.1109/CORNEL.1993.303072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Record power density performance of AlGaAs/GaAs microwave power heterojunction bipolar transistors (HBTs) was accomplished through the use of novel design and fabrication techniques. Thermally-stable operation of HBTs up to their electronic limitation (10 mWspl mu/m/sup 2/ output power density at 10 GHz with 0.6 W CW output power, 7.1 dB gain and 60% PAE) was attained. The design of the HBT was based on a detailed electro-thermal device analysis which revealed the necessity to provide an effective heat transfer path between heat sources in a multi-emitter power device. Excess heat was transferred out of the device using thermal shunt and thermal lens techniques. The thermal resistance of the device was lowered by a factor of 2.5-3 compared to conventional devices.<<ETX>>\",\"PeriodicalId\":129440,\"journal\":{\"name\":\"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CORNEL.1993.303072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CORNEL.1993.303072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and fabrication of thermally-stable AlGaAs/GaAs microwave power HBTs
Record power density performance of AlGaAs/GaAs microwave power heterojunction bipolar transistors (HBTs) was accomplished through the use of novel design and fabrication techniques. Thermally-stable operation of HBTs up to their electronic limitation (10 mWspl mu/m/sup 2/ output power density at 10 GHz with 0.6 W CW output power, 7.1 dB gain and 60% PAE) was attained. The design of the HBT was based on a detailed electro-thermal device analysis which revealed the necessity to provide an effective heat transfer path between heat sources in a multi-emitter power device. Excess heat was transferred out of the device using thermal shunt and thermal lens techniques. The thermal resistance of the device was lowered by a factor of 2.5-3 compared to conventional devices.<>