为风险筛查做出明智的决策

Panagiotis Moutafis, I. Kakadiaris
{"title":"为风险筛查做出明智的决策","authors":"Panagiotis Moutafis, I. Kakadiaris","doi":"10.1145/2674396.2674431","DOIUrl":null,"url":null,"abstract":"Predicting the best next test for medical diagnosis is crucial as it can speed up diagnosis and reduce medical expenses. This determination should be made by fully utilizing the available information in a personalized manner for each patient. In this paper, we propose a method that uses synthesis to infer the best learning cohort for the patient under consideration. The constrained sample space is then used to select the best next test by maximizing the expected information gain.","PeriodicalId":192421,"journal":{"name":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards intelligent decision making for risk screening\",\"authors\":\"Panagiotis Moutafis, I. Kakadiaris\",\"doi\":\"10.1145/2674396.2674431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the best next test for medical diagnosis is crucial as it can speed up diagnosis and reduce medical expenses. This determination should be made by fully utilizing the available information in a personalized manner for each patient. In this paper, we propose a method that uses synthesis to infer the best learning cohort for the patient under consideration. The constrained sample space is then used to select the best next test by maximizing the expected information gain.\",\"PeriodicalId\":192421,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2674396.2674431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674396.2674431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测医疗诊断的下一个最佳测试是至关重要的,因为它可以加快诊断速度并减少医疗费用。这一决定应充分利用现有的信息,以个性化的方式为每个病人。在本文中,我们提出了一种方法,使用综合来推断最佳的学习队列考虑的病人。然后,约束样本空间通过最大化预期信息增益来选择最佳的下一个测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards intelligent decision making for risk screening
Predicting the best next test for medical diagnosis is crucial as it can speed up diagnosis and reduce medical expenses. This determination should be made by fully utilizing the available information in a personalized manner for each patient. In this paper, we propose a method that uses synthesis to infer the best learning cohort for the patient under consideration. The constrained sample space is then used to select the best next test by maximizing the expected information gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信