自动驾驶的视觉处理

Henry Schneiderman, M. Nashman
{"title":"自动驾驶的视觉处理","authors":"Henry Schneiderman, M. Nashman","doi":"10.1109/ACV.1992.240315","DOIUrl":null,"url":null,"abstract":"Describes a visual processing algorithm that supports autonomous road following. The algorithm requires that lane markings be present and attempts to track the lane markings on both lane boundaries. There are three stages of computation: extracting edges; matching extracted edge points with a geometric model of the road, and updating the geometric road model. All processing is confined to the 2-D image plane. No information about the motion of the vehicle is used. This algorithm has been implemented and tested using video taped road scenes. It performs robustly for both highways and rural roads. The algorithm runs at a sampling rate of 15 Hz and has a worst case latency of 139 milliseconds (ms). The algorithm is implemented under the NASA/NBS Standard Reference Model for Telerobotic Control System Architecture (NASREM) architecture and runs on a dedicated vision processing engine and a VME-based microprocessor system.<<ETX>>","PeriodicalId":153393,"journal":{"name":"[1992] Proceedings IEEE Workshop on Applications of Computer Vision","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Visual processing for autonomous driving\",\"authors\":\"Henry Schneiderman, M. Nashman\",\"doi\":\"10.1109/ACV.1992.240315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a visual processing algorithm that supports autonomous road following. The algorithm requires that lane markings be present and attempts to track the lane markings on both lane boundaries. There are three stages of computation: extracting edges; matching extracted edge points with a geometric model of the road, and updating the geometric road model. All processing is confined to the 2-D image plane. No information about the motion of the vehicle is used. This algorithm has been implemented and tested using video taped road scenes. It performs robustly for both highways and rural roads. The algorithm runs at a sampling rate of 15 Hz and has a worst case latency of 139 milliseconds (ms). The algorithm is implemented under the NASA/NBS Standard Reference Model for Telerobotic Control System Architecture (NASREM) architecture and runs on a dedicated vision processing engine and a VME-based microprocessor system.<<ETX>>\",\"PeriodicalId\":153393,\"journal\":{\"name\":\"[1992] Proceedings IEEE Workshop on Applications of Computer Vision\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACV.1992.240315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACV.1992.240315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

描述一种支持自动道路跟踪的视觉处理算法。该算法要求车道标记存在,并试图跟踪两个车道边界上的车道标记。计算分为三个阶段:提取边缘;将提取的边缘点与道路几何模型进行匹配,更新道路几何模型。所有的处理都局限于二维图像平面。没有使用有关车辆运动的信息。该算法已经实现并使用录像道路场景进行了测试。它在高速公路和农村道路上都表现良好。该算法以15 Hz的采样率运行,最坏情况延迟为139毫秒(ms)。该算法在NASA/NBS遥控机器人控制系统架构标准参考模型(NASREM)架构下实现,并在专用视觉处理引擎和基于vme的微处理器系统上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual processing for autonomous driving
Describes a visual processing algorithm that supports autonomous road following. The algorithm requires that lane markings be present and attempts to track the lane markings on both lane boundaries. There are three stages of computation: extracting edges; matching extracted edge points with a geometric model of the road, and updating the geometric road model. All processing is confined to the 2-D image plane. No information about the motion of the vehicle is used. This algorithm has been implemented and tested using video taped road scenes. It performs robustly for both highways and rural roads. The algorithm runs at a sampling rate of 15 Hz and has a worst case latency of 139 milliseconds (ms). The algorithm is implemented under the NASA/NBS Standard Reference Model for Telerobotic Control System Architecture (NASREM) architecture and runs on a dedicated vision processing engine and a VME-based microprocessor system.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信