城市活动模式的背景减法

Stefanos Astaras, Aristodemos Pnevmatikakis, Z. Tan
{"title":"城市活动模式的背景减法","authors":"Stefanos Astaras, Aristodemos Pnevmatikakis, Z. Tan","doi":"10.1109/SPLIM.2016.7528411","DOIUrl":null,"url":null,"abstract":"In this paper we learn patterns of activity in open urban spaces and detect activity outliers that represent events of interest. We do so utilising background suppression to flag people as foreground blobs in videos from city surveillance cameras. Since the application domain is challenging, with far-field cameras viewing scenes that vary from completely empty to very crowded, and each person in the crowds being a handful of pixels, we first establish the performance of different background subtraction algorithms using manually annotated scenes. We then apply the best-performing SubSENSE algorithm in off-line videos collected over many days, to learn the activity patterns and detect the events of interest as outliers.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Background subtraction for patterns of activities in cities\",\"authors\":\"Stefanos Astaras, Aristodemos Pnevmatikakis, Z. Tan\",\"doi\":\"10.1109/SPLIM.2016.7528411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we learn patterns of activity in open urban spaces and detect activity outliers that represent events of interest. We do so utilising background suppression to flag people as foreground blobs in videos from city surveillance cameras. Since the application domain is challenging, with far-field cameras viewing scenes that vary from completely empty to very crowded, and each person in the crowds being a handful of pixels, we first establish the performance of different background subtraction algorithms using manually annotated scenes. We then apply the best-performing SubSENSE algorithm in off-line videos collected over many days, to learn the activity patterns and detect the events of interest as outliers.\",\"PeriodicalId\":297318,\"journal\":{\"name\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPLIM.2016.7528411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们学习了开放城市空间中的活动模式,并检测了代表感兴趣事件的活动异常值。我们利用背景抑制来标记城市监控摄像头视频中的人作为前景斑点。由于应用领域具有挑战性,远场摄像机观察的场景从完全空到非常拥挤,人群中的每个人都是几个像素,我们首先使用手动注释的场景建立不同背景减去算法的性能。然后,我们在多天收集的离线视频中应用性能最佳的SubSENSE算法,以学习活动模式并检测感兴趣的事件作为异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Background subtraction for patterns of activities in cities
In this paper we learn patterns of activity in open urban spaces and detect activity outliers that represent events of interest. We do so utilising background suppression to flag people as foreground blobs in videos from city surveillance cameras. Since the application domain is challenging, with far-field cameras viewing scenes that vary from completely empty to very crowded, and each person in the crowds being a handful of pixels, we first establish the performance of different background subtraction algorithms using manually annotated scenes. We then apply the best-performing SubSENSE algorithm in off-line videos collected over many days, to learn the activity patterns and detect the events of interest as outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信