无平方传播量的环积分微分方程

J. Bosma, K. J. Larsen, Yang Zhang
{"title":"无平方传播量的环积分微分方程","authors":"J. Bosma, K. J. Larsen, Yang Zhang","doi":"10.22323/1.303.0064","DOIUrl":null,"url":null,"abstract":"We provide a sufficient condition for avoiding squared propagators in the intermediate stages of setting up differential equations for loop integrals. This condition is satisfied in a large class of two- and three-loop diagrams. For these diagrams, the differential equations can thus be computed using \"unitarity-compatible\" integration-by-parts reductions, which simplify the reduction problem by avoiding integrals with higher-power propagators.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Differential equations for loop integrals without squared propagators\",\"authors\":\"J. Bosma, K. J. Larsen, Yang Zhang\",\"doi\":\"10.22323/1.303.0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a sufficient condition for avoiding squared propagators in the intermediate stages of setting up differential equations for loop integrals. This condition is satisfied in a large class of two- and three-loop diagrams. For these diagrams, the differential equations can thus be computed using \\\"unitarity-compatible\\\" integration-by-parts reductions, which simplify the reduction problem by avoiding integrals with higher-power propagators.\",\"PeriodicalId\":140132,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.303.0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

给出了在建立环积分微分方程的中间阶段避免平方传播量的充分条件。这一条件在一大类二环图和三环图中得到满足。对于这些图,微分方程因此可以使用“统一兼容”的分部积分法来计算,它通过避免使用高功率传播子的积分来简化简化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential equations for loop integrals without squared propagators
We provide a sufficient condition for avoiding squared propagators in the intermediate stages of setting up differential equations for loop integrals. This condition is satisfied in a large class of two- and three-loop diagrams. For these diagrams, the differential equations can thus be computed using "unitarity-compatible" integration-by-parts reductions, which simplify the reduction problem by avoiding integrals with higher-power propagators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信