亚太赫兹频段距离限制对无人机通信物理层安全的影响

A. Alali, D. Rawat
{"title":"亚太赫兹频段距离限制对无人机通信物理层安全的影响","authors":"A. Alali, D. Rawat","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484560","DOIUrl":null,"url":null,"abstract":"Increasing the transmission range of a signal in sub-Terahertz (0.1-10 THz) frequency band has been a challenge due to its vapor loss and molecular absorption. It is more challenging in unmanned aerial vehicle (UAV) communications because of dynamic network topology and weather conditions. However, there are many attempts to tackle this issue. Ultra-massive multiple input multiple output (MIMO) communication is studied in this paper and has been tested in an UAV communications scenario. Also, analysis and simulations are presented to illustrate the feasibility of improving the THz communications up to 60 meters in line of sight (LoS) and non-line of sight (NLoS) areas. Finally, an analysis for Secrecy Outage Probability is presented for 0.060.3 THz to illustrate the performance of a physical layer security added to sub-THz communication.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Combating Distance Limitation in Sub-Terahertz Frequency Band for Physical Layer Security in UAV Communications\",\"authors\":\"A. Alali, D. Rawat\",\"doi\":\"10.1109/INFOCOMWKSHPS51825.2021.9484560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing the transmission range of a signal in sub-Terahertz (0.1-10 THz) frequency band has been a challenge due to its vapor loss and molecular absorption. It is more challenging in unmanned aerial vehicle (UAV) communications because of dynamic network topology and weather conditions. However, there are many attempts to tackle this issue. Ultra-massive multiple input multiple output (MIMO) communication is studied in this paper and has been tested in an UAV communications scenario. Also, analysis and simulations are presented to illustrate the feasibility of improving the THz communications up to 60 meters in line of sight (LoS) and non-line of sight (NLoS) areas. Finally, an analysis for Secrecy Outage Probability is presented for 0.060.3 THz to illustrate the performance of a physical layer security added to sub-THz communication.\",\"PeriodicalId\":109588,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于其蒸汽损失和分子吸收,增加亚太赫兹(0.1-10太赫兹)频段信号的传输范围一直是一个挑战。由于网络拓扑结构的动态性和天气条件的变化,给无人机通信带来了更大的挑战。然而,有许多尝试来解决这个问题。本文研究了超大规模多输入多输出(MIMO)通信,并在无人机通信场景中进行了测试。同时,通过分析和仿真,说明了在视距(LoS)和非视距(NLoS) 60米范围内提高太赫兹通信性能的可行性。最后,对0.060.3太赫兹的保密中断概率进行了分析,以说明添加到亚太赫兹通信中的物理层安全性的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combating Distance Limitation in Sub-Terahertz Frequency Band for Physical Layer Security in UAV Communications
Increasing the transmission range of a signal in sub-Terahertz (0.1-10 THz) frequency band has been a challenge due to its vapor loss and molecular absorption. It is more challenging in unmanned aerial vehicle (UAV) communications because of dynamic network topology and weather conditions. However, there are many attempts to tackle this issue. Ultra-massive multiple input multiple output (MIMO) communication is studied in this paper and has been tested in an UAV communications scenario. Also, analysis and simulations are presented to illustrate the feasibility of improving the THz communications up to 60 meters in line of sight (LoS) and non-line of sight (NLoS) areas. Finally, an analysis for Secrecy Outage Probability is presented for 0.060.3 THz to illustrate the performance of a physical layer security added to sub-THz communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信