谱图理论

Amol Sahebrao Hinge
{"title":"谱图理论","authors":"Amol Sahebrao Hinge","doi":"10.1090/cbms/129/05","DOIUrl":null,"url":null,"abstract":"Spectral graph theory is a vast and expanding area of combinatorics. We start these notes by introducing and motivating classical matrices associated with a graph, and then show how to derive combinatorial properties of a graph from the eigenvalues of these matrices. We then examine more modern results such as polynomial interlacing and high dimensional expanders","PeriodicalId":440287,"journal":{"name":"Zeta and 𝐿-functions in Number Theory and\n Combinatorics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2194","resultStr":"{\"title\":\"Spectral graph theory\",\"authors\":\"Amol Sahebrao Hinge\",\"doi\":\"10.1090/cbms/129/05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral graph theory is a vast and expanding area of combinatorics. We start these notes by introducing and motivating classical matrices associated with a graph, and then show how to derive combinatorial properties of a graph from the eigenvalues of these matrices. We then examine more modern results such as polynomial interlacing and high dimensional expanders\",\"PeriodicalId\":440287,\"journal\":{\"name\":\"Zeta and 𝐿-functions in Number Theory and\\n Combinatorics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeta and 𝐿-functions in Number Theory and\\n Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cbms/129/05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeta and 𝐿-functions in Number Theory and\n Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cbms/129/05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2194

摘要

谱图理论是组合学中一个广阔而不断扩展的领域。我们通过引入和激发与图相关的经典矩阵来开始这些笔记,然后展示如何从这些矩阵的特征值推导出图的组合性质。然后我们检查更现代的结果,如多项式交错和高维展开
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral graph theory
Spectral graph theory is a vast and expanding area of combinatorics. We start these notes by introducing and motivating classical matrices associated with a graph, and then show how to derive combinatorial properties of a graph from the eigenvalues of these matrices. We then examine more modern results such as polynomial interlacing and high dimensional expanders
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信