Wuyang Shui, Jin Liu, Pu Ren, S. Maddock, Mingquan Zhou
{"title":"基于室内点云的平面形状自动分割","authors":"Wuyang Shui, Jin Liu, Pu Ren, S. Maddock, Mingquan Zhou","doi":"10.1145/3013971.3014008","DOIUrl":null,"url":null,"abstract":"The use of a terrestrial laser scanner (TLS) has become a popular technique for the acquisition of 3D scenes in architecture and design. Surface reconstruction is used to generate a digital model from the acquired point clouds. However, the model often consists of excessive data, limiting real-time user experiences that make use of the model. In this study, we present a coarse to fine planar shape segmentation method for indoor point clouds, which results in the digital model of an indoor scene being represented by a small number of planar patches. First, the Gaussian map and region growing techniques are used to coarsely segment the planar shape from sampled point clouds. Then, the best-fit-plane is calculated by random sample consensus (RANSAC), avoiding the negative impact of outliers. Finally, the refinement of planar shape is produced by projecting point clouds onto the corresponding bestfit-plane. Our method has been demonstrated to be robust towards noise and outliers in the scanned point clouds and overcomes the limitations of over- and under-segmentation. We have tested our system and algorithms on real datasets and experiments show the reliability of the proposed method against existing region-growing methods.","PeriodicalId":269563,"journal":{"name":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic planar shape segmentation from indoor point clouds\",\"authors\":\"Wuyang Shui, Jin Liu, Pu Ren, S. Maddock, Mingquan Zhou\",\"doi\":\"10.1145/3013971.3014008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of a terrestrial laser scanner (TLS) has become a popular technique for the acquisition of 3D scenes in architecture and design. Surface reconstruction is used to generate a digital model from the acquired point clouds. However, the model often consists of excessive data, limiting real-time user experiences that make use of the model. In this study, we present a coarse to fine planar shape segmentation method for indoor point clouds, which results in the digital model of an indoor scene being represented by a small number of planar patches. First, the Gaussian map and region growing techniques are used to coarsely segment the planar shape from sampled point clouds. Then, the best-fit-plane is calculated by random sample consensus (RANSAC), avoiding the negative impact of outliers. Finally, the refinement of planar shape is produced by projecting point clouds onto the corresponding bestfit-plane. Our method has been demonstrated to be robust towards noise and outliers in the scanned point clouds and overcomes the limitations of over- and under-segmentation. We have tested our system and algorithms on real datasets and experiments show the reliability of the proposed method against existing region-growing methods.\",\"PeriodicalId\":269563,\"journal\":{\"name\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3013971.3014008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3013971.3014008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic planar shape segmentation from indoor point clouds
The use of a terrestrial laser scanner (TLS) has become a popular technique for the acquisition of 3D scenes in architecture and design. Surface reconstruction is used to generate a digital model from the acquired point clouds. However, the model often consists of excessive data, limiting real-time user experiences that make use of the model. In this study, we present a coarse to fine planar shape segmentation method for indoor point clouds, which results in the digital model of an indoor scene being represented by a small number of planar patches. First, the Gaussian map and region growing techniques are used to coarsely segment the planar shape from sampled point clouds. Then, the best-fit-plane is calculated by random sample consensus (RANSAC), avoiding the negative impact of outliers. Finally, the refinement of planar shape is produced by projecting point clouds onto the corresponding bestfit-plane. Our method has been demonstrated to be robust towards noise and outliers in the scanned point clouds and overcomes the limitations of over- and under-segmentation. We have tested our system and algorithms on real datasets and experiments show the reliability of the proposed method against existing region-growing methods.