Hermite正态检验的渐近分布

D. Declercq, P. Duvant
{"title":"Hermite正态检验的渐近分布","authors":"D. Declercq, P. Duvant","doi":"10.1109/HOST.1997.613560","DOIUrl":null,"url":null,"abstract":"This paper presents some asymptotical results of the Hermite normality test previously introduced. We show that the Hermite statistic S/sub H/ is distributed under the null hypothesis as a quadratic form of normal variates and under the nonnull hypothesis as normal. The special case of tests with two polynomials is studied in detail. Finally, we give some considerations for the choice of the best Hermite test when prior knowledge is available and especially we determine the test asymptotically the most powerful for a fixed alternative distribution (the uniform distribution). Those results are supported by simulations.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic distribution of the Hermite normality test\",\"authors\":\"D. Declercq, P. Duvant\",\"doi\":\"10.1109/HOST.1997.613560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some asymptotical results of the Hermite normality test previously introduced. We show that the Hermite statistic S/sub H/ is distributed under the null hypothesis as a quadratic form of normal variates and under the nonnull hypothesis as normal. The special case of tests with two polynomials is studied in detail. Finally, we give some considerations for the choice of the best Hermite test when prior knowledge is available and especially we determine the test asymptotically the most powerful for a fixed alternative distribution (the uniform distribution). Those results are supported by simulations.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了先前介绍的Hermite正态性检验的一些渐近结果。我们证明了Hermite统计量S/sub H/在零假设下作为正态变量的二次形式分布,在非零假设下作为正态分布。详细研究了双多项式检验的特殊情况。最后,我们给出了在有先验知识的情况下选择最佳Hermite检验的一些考虑,特别是对于一个固定的替代分布(均匀分布),我们确定了渐近最有效的检验。这些结果得到了模拟的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic distribution of the Hermite normality test
This paper presents some asymptotical results of the Hermite normality test previously introduced. We show that the Hermite statistic S/sub H/ is distributed under the null hypothesis as a quadratic form of normal variates and under the nonnull hypothesis as normal. The special case of tests with two polynomials is studied in detail. Finally, we give some considerations for the choice of the best Hermite test when prior knowledge is available and especially we determine the test asymptotically the most powerful for a fixed alternative distribution (the uniform distribution). Those results are supported by simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信